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Preface

Constraint programming supports a great ambition for computer programming:
the one of making programming essentially a modeling task, with equations,
constraints, and logical formulas. This field emerged in the mid-1980s borrowing
concepts from logic programming, operations research, and artificial intelligence.
Its foundation is the use of relations on mathematical variables to compute with
partial information systems. The successes of constraint programming for solv-
ing combinatorial optimization problems in industry or commerce are related to
the advances made in the field on new constraint propagation techniques and on
declarative languages which allow control on the mixing of heterogeneous resolu-
tion techniques such as numerical, symbolic, deductive, and heuristic techniques.

This volume contains the papers selected for the post-proceedings of the 12th
International Workshop on Constraint Solving and Constraint Logic Program-
ming (CSCLP 2007) held during June 7–8, 2008 in Rocquencourt, France. This
workshop, open to all, was organized as the 12th meeting of the working group
on Constraints of the European Research Consortium for Informatics and Math-
ematics (ERCIM), continuing a series of workshops organized since the creation
of the working group in 1997. A selection of papers of these annual workshops
have been published since 2002 in a series of books which illustrate the evolu-
tion of the field, under the title “Recent Advances in Constraints” in the Lecture
Notes in Artificial Intelligence series.

This year, there were 16 submissions, most of them being extended and re-
vised versions of papers presented at the workshop, plus some new papers. Each
submission was reviewed by three reviewers. The Program Committee decided
to accept ten papers for publication in this book.

We would like to take the opportunity to thank all authors who submit-
ted a paper, as well as the reviewers for their useful work. CSCLP 2007 was
made possible thanks to the support of the European Research Consortium for
Informatics and Mathematics (ERCIM), the Institut National de la Recherche
en Informatique et Automatique (INRIA), and the Association for Constraint
Programming (ACP).

May 2008 François Fages
Francesca Rossi
Sylvain Soliman
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Quasi-Linear-Time Algorithms by Generalisation of Union-Find in
CHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Thom Frühwirth
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A Comparison of the Notions of Optimality in
Soft Constraints and Graphical Games

Krzysztof R. Apt1,2, Francesca Rossi3, and K. Brent Venable3

1 CWI Amsterdam, Amsterdam, The Netherlands
2 University of Amsterdam, Amsterdam, The Netherlands

3 University of Padova, Padova, Italy
apt@cwi.nl, {frossi,kvenable}@math.unipd.it

Abstract. The notion of optimality naturally arises in many areas of
applied mathematics and computer science concerned with decision mak-
ing. Here we consider this notion in the context of two formalisms used
for different purposes and in different research areas: graphical games
and soft constraints. We relate the notion of optimality used in the area
of soft constraint satisfaction problems (SCSPs) to that used in graphical
games, showing that for a large class of SCSPs that includes weighted
constraints every optimal solution corresponds to a Nash equilibrium
that is also a Pareto efficient joint strategy.

We also study alternative mappings including one that maps graphical
games to SCSPs, for which Pareto efficient joint strategies and optimal
solutions coincide.

1 Introduction

The concept of optimality is prevalent in many areas of applied mathematics
and computer science. It is of relevance whenever we need to choose among
several alternatives that are not equally preferable. For example, in constraint
optimization, each solution of a constraint problem has a quality level associated
with it and the aim is to choose an optimal solution, that is, a solution with an
optimal quality level.

The aim of this paper is to clarify the relation between the notions of optimal-
ity used in game theory, commonly used to model multi-agent systems, and soft
constraints. This allows us to gain new insights into these notions which hope-
fully will lead to further cross-fertilization among these two different approaches
to model optimality.

Game theory, notably the theory of strategic games, captures the idea of an
interaction between agents (players). Each player chooses one among a set of
strategies, and it has a payoff function on the game’s joint strategies that allows
the player to take action (simultaneously with the other players) with the aim
of maximizing its payoff. A commonly used concept of optimality in strategic
games is that of a Nash equilibrium. Intuitively, it is a joint strategy that is
optimal for each player under the assumption that only he may reconsider his
action. Another concept of optimality concerns Pareto efficient joint strategies,

F. Fages, F. Rossi, and S. Soliman (Eds.): CSCLP 2007, LNAI 5129, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 K.R. Apt, F. Rossi, and K.B. Venable

which are those in which no player can improve its payoff without decreasing the
payoff of some other player. Sometimes it is useful to consider constrained Nash
equilibria, that is, Nash equilibria that satisfy some additional requirements [6].
For example, Pareto efficient Nash equilibria are Nash equilibria which are also
Pareto efficient among the Nash equilibria.

Soft constraints, see e.g. [2], are a quantitative formalism which allow us to
express constraints and preferences. While constraints state what is acceptable
for a certain subset of the objects of the problem, preferences (also called soft
constraints) allow for several levels of acceptance. An example are fuzzy con-
straints, see [4] and [11], where acceptance levels are between 0 and 1, and
where the quality of a solution is the minimal level over all the constraints. An
optimal solution is the one with the highest quality. The research in this area fo-
cuses mainly on algorithms for finding optimal solutions and on the relationship
between modelling formalisms (see [9]).

We consider the notions of optimality in soft constraints and in strategic
games. Although apparently the only connection between these two formalisms
is that they both model preferences, we show that there is in fact a strong
relationship. This is surprising and interesting on its own. Moreover, it might be
exploited for a cross-fertilization among these frameworks.

In considering the relationship between strategic games and soft constraints,
the appropriate notion of a strategic game is here that of a graphical game, see [7].
This is due to the fact that soft constraints usually involve only a small subset of
the problem variables. This is in analogy with the fact that in a graphical game
a player’s payoff function depends only on a (usually small) number of other
players.

We consider a ‘local’ mapping that associates with each soft constraint satis-
faction problem (in short, a soft CSP, or an SCSP) a graphical game. For strictly
monotonic SCSPs (which include, for example, weighted constraints), every op-
timal solution of the SCSP is mapped to a Nash equilibrium of the game. We
also show that this local mapping, when applied to a consistent CSP (that is, a
classical constraint satisfaction problem), maps the solutions of the CSP to the
Nash equilibria of the corresponding graphical game. This relationship between
the optimal solutions and Nash equilibria holds in general, and not just for a
subclass, if we consider a ‘global’ mapping from the SCSPs to the graphical
games, which is independent of the constraint structure.

We then consider the relationship between optimal solutions of the SCSPs
and Pareto efficiency in graphical games. First we show that the above local
mapping maps every optimal solution of a strictly monotonic SCSP to a Pareto
efficient joint strategy. We then exhibit a mapping from the graphical games to
the SCSPs for which the optimal solutions of the SCSP coincide with the Pareto
efficient joint strategies of the game.

In [5] a mapping from graphical games to classical CSPs has been defined,
and it has been shown that the Nash equilibria of the games coincide with the
solutions of the CSPs. We can use this mapping, together with our mapping
from the graphical games to the SCSPs, to identify the Pareto efficient Nash
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equilibria of the given graphical game. In fact, these equilibria correspond to the
optimal solutions of the SCSP obtained by joining the soft and hard constraints
generated by the two mappings.

The study of the relations among preference models coming from different
fields such as AI and game theory has only recently gained attention. In [1] we
have considered the correspondence between optimality in CP-nets of [3] and
pure Nash equilibria in so-called parametrized strategic games, showing that
there is a precise correspondence between these two concepts.

As mentioned above, a mapping from strategic, graphical and other types of
games to classical CSPs has been considered in [5], leading to interesting results
on the complexity of deciding whether a game has a pure Nash equilibria or
other kinds of desirable joint strategies.

In [12] a mapping from the distributed constraint optimization problems to
strategic graphical games is introduced, where the optimization criteria is to
maximize the sum of utilities. By using this mapping, it is shown that the optimal
solutions of the given problem are Nash equilibria of the generated game. This
result is in line with our findings regarding strictly monotonic SCSPs, which
include the class of problems considered in [12].

2 Preliminaries

In this section we recall the main notions regarding soft constraints and strategic
games.

2.1 Soft Constraints

Soft constraints, see e.g. [2], allow to express constraints and preferences. While
constraints state what is acceptable for a certain subset of the objects of the
problem, preferences (also called soft constraints) allow for several levels of ac-
ceptance. A technical way to describe soft constraints is via the use of an alge-
braic structure called a c-semiring.

A c-semiring is a tuple 〈A, +,×,0,1〉, where:

• A is a set, called the carrier of the semiring, and 0,1 ∈ A;
• + is commutative, associative, idempotent, 0 is its unit element, and 1 is its

absorbing element;
• × is associative, commutative, distributes over +, 1 is its unit element and

0 is its absorbing element.

Elements 0 and 1 represent, respectively, the highest and lowest preference.
While the operator × is used to combine preferences, the operator + induces a
partial ordering on the carrier A defined by

a ≤ b iff a + b = b.

Given a c-semiring S = 〈A, +,×,0,1〉, and a set of variables V , each variable
x with a domain D(x), a soft constraint is a pair 〈def, con〉, where con ⊆ V
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and def : ×y∈conD(y) → A. So a constraint specifies a set of variables (the ones
in con), and assigns to each tuple of values from ×y∈conD(y), the Cartesian
product of the variable domains, an element of the semiring carrier A.

A soft constraint satisfaction problem (in short, a soft CSP or an
SCSP) is a tuple 〈C, V, D, S〉 where V is a set of variables, with the corresponding
set of domains D, C is a set of soft constraints over V and S is a c-semiring. Given
an SCSP, a solution is an instantiation of all the variables. The preference of
a solution s is the combination by means of the × operator of all the preference
levels given by the constraints to the corresponding subtuples of the solution, or
more formally,

Πc∈Cdefc(s ↓conc
),

where Π is the multiplicative operator of the semiring and defc(s ↓conc
) is the

preference associated by the constraint c to the projection of the solution s on
the variables in conc.

A solution is called optimal if there is no other solution with a strictly higher
preference.

Three widely used instances of SCSPs are:

• Classical CSPs (in short CSPs), based on the c-semiring 〈{0, 1},∨,∧, 0, 1〉.
They model the customary CSPs in which tuples are either allowed or not.
So CSPs can be seen as a special case of SCSPs.

• Fuzzy CSPs, based on the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉. In
such problems, preferences are the values in [0, 1], combined by taking the
minimum and the goal is to maximize the minimum preference.

• Weighted CSPs, based on the weighted c-semiring 〈
+, min, +,∞, 0〉.
Preferences are costs ranging over non-negative reals, which are aggregated
using the sum. The goal is to minimize the total cost.

A simple example of a fuzzy CSP is the following one:

• three variables: x, y, and z, each with the domain {a, b};
• two constraints: Cxy (over x and y) and Cyz (over y and z) defined by:

Cxy := {(aa, 0.4), (ab, 0.1), (ba, 0.3), (bb, 0.5)},
Cyz := {(aa, 0.4), (ab, 0.3), (ba, 0.1), (bb, 0.5)}.

The unique optimal solution of this problem is bbb (an abbreviation for x = y =
z = b). Its preference is 0.5.

The semiring-based formalism allows one to model also optimization problems
with several criteria. This is done by simply considering SCSPs defined on c-
semirings which are the Cartesian product of linearly ordered c-semirings. For
example, the c-semiring

〈[0, 1] × [0, 1], (max, max), (min, min), (0,0), (1,1)〉

is the Cartesian product of two fuzzy c-semirings. In a SCSP based on such a c-
semiring, preferences are pairs, e.g. (0.1,0.9), combined using the min operator
on each component, e.g. (0.1, 0.8) × (0.3, 0.6)=(0.1, 0.6). The Pareto ordering
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induced by using the max operator on each component is a partial ordering. In
this ordering, for example, (0.1, 0.6) < (0.2, 0.8), while (0.1, 0.9) is incomparable
to (0.9, 0.1). More generally, if we consider the Cartesian product of n semirings,
we end up with a semiring whose elements are tuples of n preferences, each
coming from one of the given semirings. Two of such tuples are then ordered if
each element in one of them is better or equal to the corresponding one in the
other tuple according to the relevant semiring.

2.2 Strategic Games

Let us recall now the notion of a strategic game, see, e.g., [8]. A strategic game
for a set N of n players (n > 1) is a sequence

(S1, . . ., Sn, p1, . . ., pn),

where for each i ∈ [1..n]

• Si is the non-empty set of strategies available to player i,
• pi is the payoff function for the player i, so pi : S1 × . . .× Sn → A, where

A is some fixed linearly ordered set1.

Given a sequence of non-empty sets S1, . . ., Sn and s ∈ S1×. . .×Sn we denote the
ith element of s by si, abbreviate N \ {i} to −i, and use the following standard
notation of game theory, where i ∈ [1..n] and I := i1, . . ., ik is a subsequence of
1, . . ., n:

• sI := (si1 , . . ., sik
),

• (s′i, s−i) := (s1, . . ., si−1, s
′
i, si+1, . . ., sn), where we assume that s′i ∈ Si,

• SI := Si1 × . . . × Sik
.

A joint strategy s is called

• a pure Nash equilibrium (from now on, simply Nash equilibrium) iff

pi(s) ≥ pi(s′i, s−i) (1)

for all i ∈ [1..n] and all s′i ∈ Si,
• Pareto efficient if for no joint strategy s′, pi(s′) ≥ pi(s) for all i ∈ [1..n]

and pi(s′) > pi(s) for some i ∈ [1..n].

Pareto efficiency can be alternatively defined by considering the following strict
Pareto ordering <P on the n-tuples of reals:

(a1, . . ., an) <P (b1, . . ., bn) iff ∀i ∈ [1..n] ai ≤ bi and ∃i ∈ [1..n] ai < bi.

Then a joint strategy s is Pareto efficient iff the n-tuple (p1(s), . . ., pn(s)) is a
maximal element in the <P ordering on such n-tuples of reals.

To clarify these notions consider the classical Prisoner’s Dilemma game rep-
resented by the following bimatrix representing the payoffs to both players:
1 The use of A instead of the set of real numbers precludes the construction of mixed

strategies and hence of Nash equilibria in mixed strategies, but is sufficient for our
purposes.
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C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

Each player i represents a prisoner, who has two strategies, Ci (cooper-
ate) and Ni (not cooperate). Table entries represent payoffs for the players
(where the first component is the payoff of player 1 and the second one that of
player 2).

The two prisoners gain when both cooperate (a gain of 3 each). However, if
only one of them cooperates, the other one, who does not cooperate, will gain
more (a gain of 4). If both do not cooperate, both gain very little (that is, 1 each),
but more than the ”cheated” cooperator whose cooperation is not returned (that
is, 0).

Here the unique Nash equilibrium is (N1, N2), while the other three joint
strategies (C1, C2), (C1, N2) and (N1, C2) are Pareto efficient.

2.3 Graphical Games

A related modification of the concept of strategic games, called graphical
games, was proposed in [7]. These games stress the locality in taking decision.
In a graphical game the payoff of each player depends only on the strategies of
its neighbours in a given in advance graph structure over the set of players.

More formally, a graphical game for n players with the corresponding strat-
egy sets S1, . . ., Sn with the payoffs being elements of a linearly ordered set A,
is defined by assuming a neighbour function neigh that given a player i yields
its set of neighbours neigh(i). The payoff for player i is then a function pi from
Πj∈neigh(i)∪{i}Sj to A. We denote such a graphical game by

(S1, . . . , Sn,neigh, p1, . . . , pn, A).

By using the canonical extensions of these payoff functions to the Cartesian
product of all strategy sets one can then extend the previously introduced con-
cepts to the graphical games. Further, when all pairs of players are neighbours,
a graphical game reduces to a strategic game.

3 Optimality in SCSPs and Nash Equilibria in Graphical
Games

In this section we relate the notion of optimality in soft constraints and the
concept of Nash equilibria in graphical games. We shall see that, while CSPs
are sufficient to obtain the Nash equilibria of any given graphical game, the
opposite direction does not hold. However, graphical games can model, via their
Nash equilibria, a superset of the set of the optimal solutions of any given SCSP.

The first statement is based on a result in [5], where, given a graphical game,
it is shown how to build a corresponding CSP such that the Nash equilibria of
the game and the solutions of the CSP coincide. Thus, the full expressive power



A Comparison of the Notions of Optimality 7

of SCSPs is not needed to model the Nash equilibria of a game. We will now
focus on the opposite direction: from SCSPs to graphical games. Unfortunately,
the inverse of the mapping defined in [5] cannot be used for this purpose since
it only returns CSPs of a specific kind.

3.1 From SCSPs to Graphical Games: A Local Mapping

We now define a mapping from soft CSPs to a specific kind of graphical games.
We identify the players with the variables. Thus, since soft constraints link vari-
ables, the resulting game players are naturally connected. To capture this aspect,
we use graphical games. We allow here payoffs to be elements of an arbitrary
linearly ordered set.

Let us consider a first possible mapping from SCSPs to graphical games. In
what follows we focus on SCSPs based on c-semirings with the carrier linearly
ordered by ≤ (e.g. fuzzy or weighted) and on the concepts of optimal solutions
in SCSPs and Nash equilibria in graphical games.

Given a SCSP P := 〈C, V, D, S〉 we define the corresponding graphical game
for n = |V | players as follows:

• the players: one for each variable;
• the strategies of player i: all values in the domain of the corresponding

variable xi;
• the neighbourhood relation: j ∈ neigh(i) iff the variables xi and xj appear

together in some constraint from C;
• the payoff function of player i:

Let Ci ⊆ C be the set of constraints involving xi and let X be the set
of variables that appear together with xi in some constraint in Ci (i.e.,
X = {xj | j ∈ neigh(i)}). Then given an assignment s to all variables in
X ∪ {xi} the payoff of player i w.r.t. s is defined by:

pi(s) := Πc∈Cidefc(s ↓conc
).

We denote the resulting graphical game by L(P ) to emphasize the fact that the
payoffs are obtained using local information about each variable, by looking only
at the constraints in which it is involved.

One could think of a different mapping where players correspond to con-
straints. However, such a mapping can be obtained by applying the local map-
ping L to the hidden variable encoding [13] of the SCSP in input.

We now analyze the relation between the optimal solutions of a SCSP P and
the Nash equilibria of the derived game L(P ).

3.1.1 General Case
In general, these two concepts are unrelated. Indeed, consider the fuzzy CSP
defined at the end of Section 2.1. The corresponding game has:

• three players, x, y, and z;
• each player has two strategies, a and b;
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• the neighbourhood relation is defined by:

neigh(x) := {y}, neigh(y) := {x, z}, neigh(z) := {y};

• the payoffs of the players are defined as follows:
• for player x:

px(aa∗) := 0.4, px(ab∗) := 0.1, px(ba∗) := 0.3, px(bb∗) := 0.5;
• for player y:

py(aaa) := 0.4, py(aab) := 0.3, py(abb) := 0.1, py(bbb) := 0.5,
py(bba) := 0.5, py(baa) := 0.3, py(bab) := 0.3, py(aba) := 0.1;

• for player z:
pz(∗aa) := 0.4, pz(∗ab) := 0.3, pz(∗ba) := 0.1, pz(∗bb) := 0.5;

where ∗ stands for either a or b and where to facilitate the analysis we use the
canonical extensions of the payoff functions px and pz to the functions on {a, b}3.

This game has two Nash equilibria: aaa and bbb. However, only bbb is an
optimal solution of the fuzzy SCSP.

One could thus think that in general the set of Nash equilibria is a superset
of the set of optimal solutions of the corresponding SCSP. However, this is not
the case. Indeed, consider a fuzzy CSP with as before three variables, x, y and
z, each with the domain {a, b}, but now with the constraints:

Cxy := {(aa, 0.9), (ab, 0.6), (ba, 0.6), (bb, 0.9)},
Cyz := {(aa, 0.1), (ab, 0.2), (ba, 0.1), (bb, 0.2)}.
Then aab, abb, bab and bbb are all optimal solutions but only aab and bbb are

Nash equilibria of the corresponding graphical game.

3.1.2 SCSPs with Strictly Monotonic Combination
Next, we consider the case when the multiplicative operator × is strictly mono-
tonic. Recall that given a c-semiring 〈A, +,×,0,1〉, the operator × is strictly
monotonic if for any a, b, c ∈ A such that a < b we have c × a < c × b. (The
symmetric condition is taken care of by the commutativity of ×.)

Note for example that in the case of classical CSPs × is not strictly monotonic,
as a < b implies that a = 0 and b = 1 but c ∧ a < c ∧ b does not hold then for
c = 0. Also in fuzzy CSPs × is not strictly monotonic, as a < b does not imply
that min(a, c) < min(b, c) for all c. In contrast, in weighted CSP × is strictly
monotonic, as a < b in the carrier means that b < a as reals, so for any c we
have c + b < c + a, i.e., c × a < c × b in the carrier.

So consider now a c-semiring with a linearly ordered carrier and a strictly
monotonic multiplicative operator. As in the previous case, given an SCSP P ,
it is possible that a Nash equilibrium of L(P ) is not an optimal solution of P .
Consider for example a weighted SCSP P with

• two variables, x and y, each with the domain D = {a, b};
• one constraint Cxy := {(aa, 3), (ab, 10), (ba, 10), (bb, 1)}.
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The corresponding game L(P ) has:
• two players, x and y, who are neighbours of each other;
• each player has two strategies, a and b;
• the payoffs defined by:

px(aa) := py(aa) := 7, px(ab) := py(ab) := 0,
px(ba) := py(ba) := 0, px(bb) := py(bb) := 9.

Notice that, in a weighted CSP we have a ≤ b in the carrier iff b ≤ a as reals, so
when passing from the SCSP to the corresponding game, we have complemented
the costs w.r.t. 10, when making them payoffs. In general, given a weighted CSP,
we can define the payoffs (which must be maximized) from the costs (which must
be minimized) by complementing the costs w.r.t. the greatest cost used in any
constraint of the problem.

Here L(P ) has two Nash equilibria, aa and bb, but only bb is an optimal
solution. Thus, as in the fuzzy case, we have that there can be a Nash equilibrium
of L(P ) that is not an optimal solution of P . However, in contrast to the fuzzy
case, when the multiplicative operator of the SCSP is strictly monotonic, the set
of Nash equilibria of L(P ) is a superset of the set of optimal solutions of P .

Theorem 1. Consider a SCSP P defined on a c-semiring 〈A, +,×,0,1〉, where
A is linearly ordered and × is strictly monotonic, and the corresponding game
L(P ). Then every optimal solution of P is a Nash equilibrium of L(P ).

Proof. We prove that if a joint strategy s is not a Nash equilibrium of game
L(P ), then it is not an optimal solution of SCSP P .

Let a be the strategy of player x in s, and let sneigh(x) and sY be, respectively,
the joint strategy of the neighbours of x, and of all other players, in s. That is,
V = {x} ∪ neigh(x) ∪ Y and we write s as (a, sneigh(x), sY ).

By assumption there is a strategy b for x such that the payoff px(s′) for
the joint strategy s′ := (b, sneigh(x), sY ) is higher than px(s). (We use here the
canonical extension of px to the Cartesian product of all the strategy sets).

So by the definition of the mapping L

Πc∈Cxdefc(s ↓conc
) < Πc∈Cxdefc(s′ ↓conc

),

where Cx is the set of all the constraints involving x in SCSP P . But the pref-
erence of s and s′ is the same on all the constraints not involving x and × is
strictly monotonic, so we conclude that

Πc∈Cdefc(s ↓conc
) < Πc∈Cdefc(s′ ↓conc

).

This means that s is not an optimal solution of P . �

3.1.3 Classical CSPs
The above result does not hold for classical CSPs. Indeed, consider a CSP with:

• three variables: x, y, and z, each with the domain {a, b};
• two constraints: Cxy (over x and y) and Cyz (over y and z) defined by:

Cxy := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)},
Cyz := {(aa, 0), (ab, 0), (ba, 1), (bb, 0)}.
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This CSP has no solutions in the classical sense, i.e., each optimal solution, in
particular baa, has preference 0. However, baa is not a Nash equilibrium of the
resulting graphical game, since the payoff of player x increases when he switches
to the strategy a.

On the other hand, if we restrict the domain of L to consistent CSPs, that is,
CSPs with at least one solution with value 1, then the discussed inclusion does
hold.

Proposition 1. Consider a consistent CSP P and the corresponding game
L(P ). Then every solution of P is a Nash equilibrium of L(P ).

Proof. Consider a solution s of P . In the resulting game L(P ) the payoff to
each player is maximal, namely 1. So the joint strategy s is a Nash equilibrium
in game L(P ). �

The reverse inclusion does not need to hold. Indeed, consider the following CSP:

• three variables: x, y, and z, each with the domain {a, b};
• two constraints: Cxy and Cyz defined by:

Cxy := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)},
Cyz := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)}.

Then aaa is a solution, so the CSP is consistent. But bbb is not an optimal
solution, while it is a Nash equilibrium of the resulting game.

So for consistent CSPs our mapping L yields games in which the set of Nash
equilibria is a, possibly strict, superset of the set of solutions of the CSP.

However, there are ways to relate CSPs and games so that the solutions and
the Nash equilibria coincide. This is what is done in [5], where the mapping is
from the strategic games to CSPs. Notice that our mapping goes in the opposite
direction and it is not the reverse of the one in [5]. In fact, the mapping in [5] is
not reversible.

3.2 From SCSPs to Graphical Games: A Global Mapping

Other mappings from SCSPs to games can be defined. While our mapping
L is in some sense ‘local’, since it considers the neighbourhood of each vari-
able, we can also define an alternative ‘global’ mapping that considers all con-
straints. More precisely, given a SCSP P = 〈C, V, D, S〉, with a linearly or-
dered carrier A of S, we define the corresponding game on n = |V | players,
GL(P ) = (S1, . . . , Sn, p1, . . . , pn, A) by using the following payoff function pi for
player i:

• given an assignment s to all variables in V

pi(s) := Πc∈Cdefc(s ↓conc
).

Notice that in the resulting game the payoff functions of all players are the same.
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Theorem 2. Consider an SCSP P over a linearly ordered carrier, and the cor-
responding game GL(P ). Then every optimal solution of P is a Nash equilibrium
of GL(P ).

Proof. An optimal solution of P , say s, is a joint strategy for which all players
have the same, highest, payoff. So no other joint strategy exists for which some
player is better off and consequently s is a Nash equilibrium. �

The opposite inclusion does not need to hold. Indeed, consider again the weighted
SCSP of Subsection 3.1 with

• two variables, x and y, each with the domain D = {a, b};
• one constraint, Cxy := {(aa, 3), (ab, 10), (ba, 10), (bb, 1)}.

Since there is one constraint, the mappings L and GL coincide. Thus we have
that aa is a Nash equilibrium of GL(P ) but is not an optimal solution of P .

While the mapping defined in this section has the advantage of providing a
precise subset relationship between optimal solutions and Nash equilibria, as
Theorem 2 states, it has an obvious disadvantage from the computational point
of view, since it requires to consider all the complete assignments of the SCSP.

3.3 Summary of Results

Summarizing, in this section we have analyzed the relationship between the op-
timal solutions of SCSPs and the Nash equilibria of graphical games. In [5] CSPs
have been shown to be sufficient to model Nash equilibria of graphical games.
Here we have considered the question whether the Nash equilibria of graphical
games can model the optimal solutions of SCSPs. We have provided two map-
pings from SCSPs to graphical games, showing that (with some conditions for
the local mapping) the set of Nash equilibria of the obtained game contains the
optimal solutions of the given SCSP.

Nash equilibria can be seen as the optimal elements in very specific order-
ings, where dominance is based on exactly one change in the joint strategy,
while SCSPs can model any ordering. So we conjecture that it is not possible
to find a mapping from SCSPs to the graphical games for which the optimals
coincide with Nash equilibria. Such a conjecture is also supported by the fact
that strict Nash equilibria can be shown to coincide with the optimals of a CP-
net, see [1], and the CP-nets can model strictly less orderings than the SCSPs,
see [10].

4 Optimality in SCSPs and Pareto Efficient Joint
Strategies in Graphical Games

Next, we relate the notion of optimality in SCSPs to the Pareto efficient joint
strategies of graphical games.
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4.1 From SCSPs to Graphical Games

Consider again the local and the global mappings from SCSPs to graphical games
defined in Sections 3.1 and 3.2. We will now prove that the local mapping yields
a game whose set of Pareto efficient joint strategies contains the set of optimal
solutions of a given SCSP. On the other hand, the global mapping gives a one-
to-one correspondence between the two sets.

Theorem 3. Consider an SCSP P defined on a c-semiring 〈A, +,×,0,1〉,
where A is linearly ordered and × is strictly monotonic, and the correspond-
ing game L(P ). Then every optimal solution of P is a Pareto efficient joint
strategy of L(P ).

Proof. Let us consider a joint strategy s of L(P) which is not Pareto efficient.
We will show that s does not correspond to an optimal solution of P . Since s is
not Pareto efficient, there is a joint strategy s′ such that pi(s) ≤ pi(s′) for all
i ∈ [1..n] and pi(s) < pi(s′) for some i ∈ [1..n]. Let us denote with I = {i ∈ [1..n]
such that pi(s) < pi(s′)}. By the definition of the mapping L, we have:

Πc∈Cidefc(s ↓conc
) < Πc∈Cidefc(s′ ↓conc

),

for all i ∈ I and where Ci is the set of all the constraints involving the variable
corresponding to player i in SCSP P . Since the preference of s and s′ is the same
on all the constraints not involving any i ∈ I, and since × is strictly monotonic,
we have:

Πc∈Cdefc(s ↓conc
) < Πc∈Cdefc(s′ ↓conc

).

This means that s is not an optimal solution of P . �

To see that there may be Pareto efficient joint strategies that do not correspond
to the optimal solutions, consider a weighted SCSP P with

• two variables, x and y, each with domain D = {a, b};
• constraint Cx := {(a, 2), (b, 1)};
• constraint Cy := {(a, 4), (b, 7)};
• constraint Cxy := {(aa, 0), (ab, 10), (ba, 10), (bb, 0)}.

The corresponding game L(P ) has:

• two players, x and y, who are neighbours of each other;
• each player has two strategies: a and b;
• the payoffs defined by: px(aa) := 8, py(aa) := 6, px(ab) := py(ab) := 0,

px(ba) := py(ba) := 0, px(bb) := 9, py(bb) := 3.

As in Section 3.1 when passing from an SCSP to the corresponding game, we
have complemented the costs w.r.t. 10, when turning them to payoffs. L(P )
has two Pareto efficient joint strategies: aa and bb. (They are also both Nash
equilibria.) However, only aa is optimal in P .
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If the combination operator is idempotent, there is no relation between the
optimal solutions of P and the Pareto efficient joint strategies of L(P ). How-
ever, if we use the global mapping defined in Section 3.2, the optimal solutions
do correspond to Pareto efficient joint strategies, regardless of the type of the
combination operator.

Theorem 4. Consider an SCSP P defined on a c-semiring 〈A, +,×,0,1〉,
where A is linearly ordered, and the corresponding game GL(P ). Then every opti-
mal solution of P is a Pareto efficient joint strategy of GL(P ), and
viceversa.

Proof. Any optimal solution corresponds to a joint strategy where all players
have the same payoff, which is the solution’s preference. Thus, such a joint strat-
egy cannot be Pareto dominated by any other strategy. Conversely, a solution
corresponding to a joint strategy with the highest payoff is optimal. �

4.2 From Graphical Games to SCSPs

Next, we define a mapping from graphical games to SCSPs that relates Pareto
efficient joint strategies in games to optimal solutions in SCSPs. In order to define
such a mapping, we limit ourselves to SCSPs defined on c-semirings which are
the Cartesian product of linearly ordered c-semirings (see Section 2.1). More
precisely, given a graphical game G = (S1, . . . , Sn,neigh, p1, . . . , pn, A) we define
the corresponding SCSP L′(G) = 〈C, V, D, S〉, as follows:

• each variable xi corresponds to a player i;
• the domain D(xi) of the variable xi consists of the set of strategies of player

i, i.e., D(xi) := Si;
• the c-semiring is
〈A1 × · · · × An, (+1, . . . , +n), (×1, . . . ,×n), (01, . . . ,0n), (11, . . . ,1n)〉,
the Cartesian product of n arbitrary linearly ordered semirings;

• soft constraints: for each variable xi, one constraint 〈def, con〉 such that:
• con = neigh(xi) ∪ {xi};
• def : Πy∈conD(y) → A1 × · · · × An such that for any s ∈ Πy∈conD(y),

def(s) := (d1, . . . , dn) with dj = 1j for every j �= i and di = f(pi(s)),
where f : A → Ai is an order preserving mapping from payoffs to pref-
erences (i.e., if r > r′ then f(r) > f(r′) in the c-semiring’s ordering).

To illustrate it consider again the previously used Prisoner’s Dilemma game:

C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

Recall that in this game the only Nash equilibrium is (N1, N2), while the other
three joint strategies are Pareto efficient.

We shall now construct a corresponding SCSP based on the Cartesian product
of two weighted semirings. This SCSP according to the mapping L′ has:2

2 Recall that in the weighted semiring 1 equals 0.
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• two variables: x1 and x2, each with the domain {c, n};
• two constraints, both on x1 and x2:

• constraint c1 with def(cc) := 〈7, 0〉, def(cn) := 〈10, 0〉, def(nc) := 〈6, 0〉,
def(nn) := 〈9, 0〉;

• constraint c2 with def(cc) := 〈0, 7〉, def(cn) := 〈0, 6〉, def(nc) := 〈0, 10〉,
def(nn) := 〈0, 9〉;

The optimal solutions of this SCSPs are: cc, with preference 〈7, 7〉, nc, with
preference 〈10, 6〉, cn, with preference 〈6, 10〉. The remaining solution, nn, has a
lower preference in the Pareto ordering. Indeed, its preference 〈9, 9〉 is dominated
by 〈7, 7〉, the preference of cc (since preferences are here costs and have to be
minimized). Thus the optimal solutions coincide here with the Pareto efficient
joint strategies of the given game. This is true in general.

Theorem 5. Consider a graphical game G and a corresponding SCSP L′(G).
Then the optimal solutions of L′(G) coincide with the Pareto efficient joint
strategies of G.

Proof. In the definition of the mapping L′ we stipulated that the mapping f
maintains the ordering from the payoffs to preferences. As a result each joint
strategy s corresponds to the n-tuple of preferences (f(p1(s)), . . . , f(pn(s)))
and the Pareto orderings on the n-tuples (p1(s), . . . , pn(s)) and (f(p1(s)), . . . ,
f(pn(s))) coincide. Consequently a sequence s is an optimal solution of the SCSP
L′(G) iff (f(p1(s)), . . . , f(pn(s))) is a maximal element of the corresponding
Pareto ordering. �

We notice that L′ is injective and, thus, can be reversed on its image. When
such a reverse mapping is applied to these specific SCSPs, payoffs correspond to
projecting of the players’ valuations to a subcomponent.

4.2.1 Pareto Efficient Nash Equilibria
As mentioned earlier, in [5] a mapping is defined from the graphical games to CSPs
such that Nash equilibria coincide with the solutions of CSP. Instead, our map-
ping is from the graphical games to SCSPs, and is such that Pareto efficient joint
strategies and the optimal solutions coincide.

Since CSPs can be seen as a special instance of SCSPs, where only 1, 0, the top
and bottom elements of the semiring, are used, it is possible to add to any SCSP
a set of hard constraints. Therefore we can merge the results of the two mappings
into a single SCSP, which contains the soft constraints generated by L′ and also
the hard constraints generated by the mapping in [5], Below we denote these
hard constraints by H(G). We recall that each constraint in H(G) corresponds
to a player, has the variables corresponding to the player and it neighbours and
allows only tuples corresponding to the strategies in which the player has no
so-called regrets. If we do this, then the optimal solutions of the new SCSP with
preference higher than 0 are the Pareto efficient Nash equilibria of the given
game, that is, those Nash equilibria which dominate or are incomparable with
all other Nash equilibria according to the Pareto ordering. Formally, we have the
following result.
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Theorem 6. Consider a graphical game G and the SCSP L′(G)∪H(G). If the
optimal solutions of L′(G) ∪ H(G) have global preference greater than 0, they
correspond to the Pareto efficient Nash equilibria of G.

Proof. Given any solution s, let p be its preference in L′(G) and p′ in L′(G) ∪
H(G). By the construction of the constraints H(G) we have that p′ equals p if s
is a Nash equilibrium and p′ equals 0 otherwise. The remainder of the argument
is as in the proof of Theorem 5. �

For example, in the Prisoner’s Dilemma game, the mapping in [5] would generate
just one constraint on x1 and x2 with nn as the only allowed tuple. In our setting,
when using as the linearly ordered c-semirings the weighted semirings, this would
become a soft constraint with

def(cc) := def(cn) := def(nc) = 〈∞,∞〉, def(nn) := 〈0, 0〉.

With this new constraint, all solutions have the preference 〈∞,∞〉, except for nn
which has the preference 〈9, 9〉 and thus is optimal. This solution corresponds to
the joint strategy (N1, N2) with the payoff (1, 1) (and thus preference (9, 9)). This
is the only Nash equilibrium and thus the only Pareto efficient Nash equilibrium.

This method allows us to identify among Nash equilibria the ‘optimal’ ones.
One may also be interested in knowing whether there exist Nash equilibria which
are also Pareto efficient joint strategies. For example, in the Prisoners’ Dilemma
example, there are no such Nash equilibria. To find any such joint strategies we can
use the two mappings separately, to obtain, given a game G, both an SCSP L′(G)
and a CSP H(G) (using the mapping in [5]). Then we should take the intersection
of the set of optimal solutions of L′(G) and the set of solutions of H(G).

4.3 Summary of Results

We have considered the relationship between optimal solutions of SCSPs and
Pareto efficient joint strategies in graphical games. The local mapping of Section
3.1 turns out to map optimal solutions of a given SCSP to Pareto efficient joint
strategies, while the global mapping of Section 3.2 yields a one-to-one correspon-
dence. For the reverse direction it is possible to define a mapping such that these
two notions of optimality coincide. However, none of these mappings are onto.

5 Conclusions

In this paper we related two formalisms that are commonly used to reason about
optimal outcomes: graphical games and soft constraints. While for soft constraints
there is only one notion of optimality, for graphical games there are at least two. In
this paper we have considered Nash equilibria and Pareto efficient joint strategies.

We have defined a natural mapping from SCSPs that combine preferences
using a strictly monotonic operator to a class of graphical games such that the
optimal solutions of the SCSP are included in the Nash equilibria of the game
and in the set of Pareto efficient joint strategies. In general the inclusions cannot
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be reversed. We have also exhibited a mapping from the graphical games to a
class of SCSPs such that the Pareto efficient joint strategies of the game coincide
with the optimal solutions of the SCSP.

These results can be used in many ways. One obvious way is to try to exploit
computational and algorithmic results existing for one of these areas in another.
This has been pursued already in [5] for games by using hard constraints. As a
consequence of our results this can also be done for strategic games by using soft
constraints. For example, finding a Pareto efficient joint strategy involves mapping
a game into an SCSP and then solving it. A similar approach can also be applied
to Pareto efficient Nash equilibria, which can be found by solving a suitable SCSP.
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Abstract. Temporal networks play a crucial role in modeling temporal relations 
in planning and scheduling applications. Temporal Networks with Alternatives 
(TNAs) were proposed to model alternative and parallel processes in production 
scheduling, however the problem of deciding which nodes can be consistently 
included in such networks is NP-complete. A tractable subclass, called Nested 
TNAs, can still cover a wide range of real-life processes, while the problem of 
deciding node validity is solvable in polynomial time. In this paper, we show 
that adding simple temporal constraints (instead of precedence relations) to 
Nested TNAs makes the problem NP-hard again. We also present several com-
plete and incomplete techniques for temporal reasoning in Nested TNAs. 

1   Introduction 

Planning and scheduling applications almost always include some form of temporal 
reasoning, for example, a causal relation (the effect of some activity is required for 
processing another activity) implies a precedence constraint. These relations are fre-
quently modeled using temporal networks where nodes correspond to activities and 
arcs are annotated by the temporal relations between activities. Current temporal net-
works handle well temporal information including disjunction of temporal constraints 
[13] or uncertainty [4]. Several other extensions of temporal networks appeared re-
cently such as resource temporal networks [10] or disjunctive temporal networks with 
finite domain constraints [11]. These extensions integrate temporal reasoning with 
reasoning on non-temporal information, such as fluent resources (for example fuel 
consumption during car driving). All these approaches assume that all nodes are pre-
sent in the network, though the position of nodes in time may be influenced by other 
than temporal constraints. Conditional Temporal Planning [14] introduced an option 
to decide which node will be present in the solution depending on a certain external 
condition. Hence CTP can model conditional plans where the nodes actually present 
in the solution are selected based on external forces. Temporal Plan Networks [8] 
(TPN) also include conditional branching and they attempt to model all alternative 
plans in a single graph. Temporal Networks with Alternatives [1] (TNA) introduced a 
different type of alternatives with so called parallel and alternative branching.  
They are more general than TPN but the problem of deciding which nodes can be 
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consistently included in the network, if some nodes are pre-selected, is NP-complete 
even if no temporal constraints are imposed. Therefore a restricted form, so called 
Nested TNAs, was proposed in [2]. Nested TNAs have a similar topology as TPNs 
though the original motivation for their introduction was different – a Nested TNA 
focuses on manufacturing processes while a TPN models plans for unmanned vehi-
cles. The paper [2] shows that the problem of deciding whether a subset of nodes can 
be selected to satisfy the branching constraints is now tractable, but it still leaves open 
the question what happens if temporal constraints are assumed. In this paper we pre-
sent a new complexity result for Nested Temporal Networks with Alternatives where 
simple temporal constraints are included. We also present some new algorithms that 
can help in solving problems based on (Nested) TNAs. These algorithms exploit the 
integrated reasoning on both logical (branching) and temporal constraints. 

There exist other frameworks mixing temporal and logical reasoning. In problems, 
such as log-based reconciliation [7], we need to model inter-dependencies between 
nodes which concern their presence/absence in the final solution. The possibility to 
select nodes according to logical, temporal, and resource constrains was introduced to 
manufacturing scheduling by ILOG in their MaScLib [12]. The same idea was inde-
pendently formalized in Extended Resource Constrained Project Scheduling Problem 
[9]. In the common model each node has a Boolean validity variable indicating 
whether the node is selected to be in the solution.  These variables are a discrete ver-
sion of PEX variables used by Beck and Fox [3] for modeling presence of alternative 
activities in the schedule. In many recent approaches, these variables are intercon-
nected by logical constraints such as the dependency constraint described above. 

In this paper, we first give motivation for using Temporal Networks with Alterna-
tives and formally introduce TNAs and their nested form. The main part of the paper 
shows that using temporal constraints in Nested TNAs makes the problem of deciding 
which nodes can be consistency included in the network NP-complete again. We also 
present several techniques that can help in solving the problem. These techniques are 
proposed in the context of constraint satisfaction so they can be easily integrated with 
other constraints, for example with constraints that model resources. Hence the pro-
posed techniques are useful for solving oversubscribed real-life scheduling problems. 

2   Motivation and Background 

Let us consider a manufacturing scheduling problem of piston production. Each pis-
ton consists of a rod and a tube that need to be assembled together to form the piston. 
Each rod consists of the main body and a special kit that is welded to the rod (the kit 
needs to be assembled before welding). The rod body is sawn from a large metal 
stick. The tube can also be sawn from a larger tube. Rod body, the kit, and tube must 
be collected together from the warehouse to ensure that their diameters fit. If the tube 
is not available, it can be bought from an external supplier. In any case some welding 
is necessary to be done on the tube before it can be assembled with the rod. Finally, 
between sawing and welding, both rod and tube must be cleared of metal cuts pro-
duced by sawing. Assume that welding and sawing operations require ten time units, 
assembly operation requires five time units, clearing can be done in two time units, 
and the material is collected from warehouse in one time unit. If the tube is bought 
from an external supplier then it takes fifty time units to get it. Moreover, tube and 
rod must cool-down after welding which takes five time units. 
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Fig. 1. Example of a manufacturing process with alternatives 

The manufacturing processes from the above problem can be described using a 
Temporal Network with Alternatives depicted in Figure 1. Nodes correspond to start 
times of operations and arcs are annotated by simple temporal constraints in the form 
[a, b], where a describes the minimal distance (in time) between the nodes and b de-
scribes the maximal distance. Informally, this network describes the traditional simple 
temporal constraints [5] together with the specification of branching of processes. 
There is a parallel branching marked by a semi-circle indicating that the process 
splits and runs in parallel and an alternative branching marked by ALT indicating that 
the process will consists of exactly one alternative path (we can choose between buy-
ing a tube and producing it in situ).  

3   Temporal Networks with Alternatives 

Let us now formally define Temporal Networks with Alternatives from [1]. Let G be 
a directed acyclic graph. A sub-graph of G is called a fan-out sub-graph if it consists 
of nodes x, y1,…, yk (for some k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G. If 
y1,…, yk are all and the only successors of x in G (there is no z such that (x, z) is an arc 
in G and ∀i = 1,…,k: z ≠ yi) then we call the fan-out sub-graph complete. Similarly, a 
sub-graph of G is called a fan-in sub-graph if it consists of nodes x, y1,…, yk (for 
some k) such that each (yi, x), 1 ≤ i ≤ k, is an arc in G. A complete fan-in sub-graph is 
defined similarly as above. In both cases x is called a principal node and all y1,…, yk 
are called branching nodes. 

Definition 1: A directed acyclic graph G together with its pair wise edge-disjoint de-
composition into complete fan-out and fan-in sub-graphs, where each sub-graph in the 
decomposition is marked either as a parallel sub-graph or an alternative sub-graph, is 
called a P/A graph. 
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Definition 2: Temporal Network with Alternatives is a P/A graph where each arc 
(x, y) is annotated by a pair of numbers [a,b] (a temporal annotation) where a de-
scribes the minimal distance between x and y and b describes the maximal distance, 
formally, a ≤ ty – tx ≤ b, where tx denotes the position of node x in time. Frequently, 
both numbers are non-negative, but our techniques do not require this restriction. 

Figure 1 shows an example of Temporal Network with Alternatives. If we remove the 
temporal constraints from this network then we get a P/A graph. Note that the arcs 
(sawTube, clearTube), (sawRode, clearRod), and (assemblePiston, shipPiston) form 
simple fan-in (or fan-out, it does not matter in this case) sub-graphs. As we will see 
later, it does not matter whether the sub-graphs consisting of a single arc are marked 
as parallel or alternative – the logical constraint imposed by the sub-graph will be 
always the same. Hence, we can omit the explicit marking of such single-arc sub-
graphs to make the figure less overcrowded. 

We call the special logical relations imposed by the fan-in and fan-out sub-graphs 
branching constraints. Temporarily, we omit the temporal constraints, so we will 
work with P/A graphs only, but we will return to temporal constraints later in the pa-
per. In particular, we are interested in finding whether it is possible to select a subset 
of nodes in such a way that they form a feasible graph according to the branching 
constraints. Formally, the selection of nodes can be described by an assignment of 0/1 
values to nodes of a given P/A graph, where value 1 means that the node is selected 
and value 0 means that the node is not selected. The assignment is called feasible if 

• in every parallel sub-graph all nodes are assigned the same value (both the prin-
cipal node and all branching nodes are either all 0 or all 1), 

• in every alternative sub-graph either all nodes (both the principal node and all 
branching nodes) are 0 or the principal node and exactly one branching node are 
1 while all other branching nodes are 0. 

Notice that the feasible assignment naturally describes one of the alternative processes 
in the P/A graph. For example, weldRod is present if and only if both clearRod and 
assembleKit are present (Figure 1). Similarly, weldTube is present if exactly one of 
nodes buyTube or clearTube is present (but not both). Though, the alternative branch-
ing is quite common in manufacturing scheduling, it cannot be described by binary 
logical constraints from MaScLib [12] or Extended Resource Constrained Project 
Scheduling Problem [9]. On the other hand, the branching constraints are specific 
logical relations that cannot capture all logical relations between the nodes. 

Obviously, given an arbitrary P/A graph the assignment of value 0 to all nodes is 
always feasible. On the other hand, if some of the nodes are required to take value 1, 
then the existence of a feasible assignment is by no means obvious. Let us now for-
mulate this decision problem formally. 

Definition 3: Given a P/A graph G and a subset of nodes in G which are assigned to 
1, the P/A graph assignment problem is “Is there a feasible assignment of 0/1 values 
to all nodes of G which extends the prescribed partial assignment?” 

Intuition motivated by real-life examples says that it should not be complicated to 
select the nodes to form a valid process according to the branching constraints de-
scribed above. The following proposition from [1] says the opposite. 
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Proposition 1: The P/A graph assignment problem is NP-complete. 

Nevertheless, if we look back to the motivation example (Figure 1), we can see that 
the TNA has a specific topology which is, according to our experience, very typical 
for real-life processes. First, the process has usually one start point and one end point. 
Second, the graph is built by decomposing meta-processes into more specific proc-
esses until non-decomposable processes (operations) are obtained. There are basically 
three types of decomposition. The meta-process can split into two or more processes 
that run in a sequence, that is, after one process is finished, the subsequent process 
can start. The meta-process can split into two or more sub-processes that run in paral-
lel, that is, all sub-processes start at the same time and the meta-process is finished 
when all sub-processes are finished. Finally, the meta-process may consists of several 
alternative sub-processes, that is, exactly one of these sub-processes is selected to do 
the job of the meta-process. Notice, that the last two decompositions have the same 
topology of the network, they only differ in the meaning of the branches in the net-
work. Note finally, that we are focusing on modeling instances of processes with par-
ticular operations that will be allocated to time. Hence we do not assume loops that 
are sometimes used to model abstract processes. Figure 2 shows how the network 
from Figure 1 is constructed from a single arc by applying the above mentioned de-
composition steps. 

 

A

A

A

A

 

Fig. 2. Building a labeled nested graph 

We will now formally describe this concept that we called nesting. The resulting 
network is called a Nested Temporal Network with Alternatives [2]. 

Definition 4: A directed graph G = ( {s,e}, {(s,e)} ) is a (base) nested graph. Let 
G = (V, E) be a graph, (x,y) ∈ E be one of its arcs, and z1,…, zk (k > 0) be nodes such 
that no zi is in V. If G is a nested graph (and I = {1,…,k}) then graph G’ = ( V ∪ {zi | 
i∈I}, E ∪ {(x,zi), (zi,y) | i∈I} – {(x,y)}) is also a nested graph. 

According to Definition 4, any nested graph can be obtained from the base graph with 
a single arc by repeated substitution of any arc (x,y) by a special sub-graph with k 
nodes (see Figure 3). Notice that a single decomposition rule covers both the serial 
process decomposition (k = 1) and the parallel/alternative process decomposition 
(k > 1). Though this definition is constructive rather than fully declarative, it is practi-
cally very useful. Namely,   interactive process editors can be based on this definition 
so the users can construct only valid nested graphs by decomposing the base nested 
graph. 
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Fig. 3. Arc decomposition in nested graphs 

The directed nested graph defines topology of the nested P/A graph but we also 
need to annotate all fan-in and fan-out sub-graphs as either alternative or parallel sub-
graphs. Moreover, we need to do the annotation carefully so the assignment problem 
can be solved easily for nested graphs and no node is inherently invalid. The idea is to 
annotate each node by input and output label which defines the type of branching 
(fan-in or fan-out sub-graph). 

Definition 5: Labeled nested graph is a nested graph where each node has (possibly 
empty) input and output labels defined in the following way. Nodes s and e in the 
base nested graph and nodes zi introduced during decomposition have empty initial 
labels. Let k be the number of nodes introduced when decomposing arc (x,y). If k > 1 
then the output label of x and the input label of y are unified and set either to PAR or 
to ALT (if one of the labels is non-empty then this label is used for both nodes).  

Figure 2 demonstrates how the labeled nested graph is constructed for the motivation 
example from Figure 1. In particular, notice how the labels of nodes are introduced (a 
semicircle for PAR label and A for ALT label). When a label is introduced for a node, 
it never changes in the generation process. If an arc (x, y) is being decomposed into a 
sub-graph with k new nodes where k > 1, then we require that the output label of x is 
unified with the input label of y. This can be done only if either both labels are identi-
cal or at least one of the labels is empty. It is easy to show that the second case always 
holds [2]. Now, we can formally introduce a nested P/A graph. 

Definition 6: A nested P/A graph is obtained from a labeled nested graph by remov-
ing the labels and defining the fan-in and fan-out sub-graphs in the following way. If 
the input label of node x is non-empty then all arcs (y, x) form a fan-in sub-graph 
which is parallel for label PAR or alternative for label ALT. Similarly, nodes with a 
non-empty output label define fan-out sub-graphs. Each arc (x, y) such that both out-
put label of x and input label of y are empty forms a parallel fan-in sub-graph. 

Note, that requesting a single arc to form a parallel fan-in sub-graph is a bit artificial. 
We use this requirement to formally ensure that each arc is a part of some sub-graph 
which is required to show that a nested P/A graph is a P/A graph [2]. What is more 
interesting is that for Nested P/A Graphs the following proposition holds. 

Proposition 2: The assignment problem for a nested P/A graph is tractable (can be 
solved in a polynomial time). 

The formal proof in [2] is based on constructing a constraint model for nested P/A 
graphs where local (namely, arc) consistency, which is achievable in polynomial time, 
implies global consistency. If global consistency is achieved then the solution can be 
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found using a backtrack-free depth-first search (provided that the problem is globally 
consistent, otherwise no solution exists). This constraint model is basically a (Berge 
acyclic) reformulation of the following straightforward model for the P/A graph as-
signment problem. Each node x is represented using a Boolean validity variable vx, 
that is a variable with domain {0,1}. If the arc between nodes x and y is a part of some 
parallel sub-graph then we define the following constraint: 

vx = vy.                            (1) 

If x is a principal node and y1,…, yk for some k are all branching nodes in some al-
ternative sub-graph then the logical relation defining the alternative branching can be 
described using the following arithmetic constraint: 

vx = Σj=1,…,k vy
j
.                                 (2) 

Notice that if k = 1 then the constraints for parallel and alternative branching are 
identical (hence, it is not necessary to distinguish between them). Notice also that the 
arithmetic constraint for alternative branching together with the use of {0,1} domains 
defines exactly the logical relation between the nodes – vx is assigned to 1 if and only 
if exactly one of vy

j
 is assigned to 1. 

4   Temporal Constraints 

So far, we focused merely on logical relations imposed by the branching constraints 
to show that logical reasoning is easy for nested P/A graphs (while it is hard for gen-
eral P/A graphs). Now we return to the temporal constraints. Notice that the selected 
feasible set of nodes together with arcs between them forms a sub-graph of the origi-
nal P/A graph. We require this sub-graph to be also temporally feasible, which means 
that all the temporal constraints between the valid nodes are satisfied in the sense of 
temporal networks [5]. Naturally, the logical and temporal reasoning is interconnected 
– if a temporal constraint between nodes x and y cannot be satisfied then (at least) one 
of the nodes must be invalid (it is assigned to 0). Before we go into technical details 
notice that if the temporal constraints are in the form of precedence relations or in 
general only minimal distances are specified in arcs (Figure 1) then temporal feasibil-
ity is trivially guaranteed thanks to acyclicity of TNAs (any node can be postponed in 
time). However, if deadlines are present (Figure 4) then temporal feasibility is not 
obvious similarly to situations when maximal distance between nodes is requested 
(for example, when cooling down restricts delays between operations). 

Formally, we can extend the above logical constraint model by annotating each 
node i by temporal variable ti indicating the position of the node in time. For simplic-
ity reasons we assume that the domain of such variables is an interval 〈0, MaxTime〉 
of integers, where MaxTime is a large enough constant given by the user. Recall that 
the temporal relation between nodes i and j is described by a pair [ai,j, bi,j]. This rela-
tion can now be naturally represented using the following constraint: 

vi * vj * (ti + ai,j) ≤ tj  ∧ vi * vj * (tj – bi,j) ≤ ti. (3) 

If bi,j = ∞ then the second part of the conjunction is omitted and similarly if   
ai,j = – ∞ then the first part of conjunction is omitted. Notice that if any vi or vj equals 
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zero (some involved node is invalid) then the constraint is trivially satisfied (we get 
0 ≤ tj ∧ 0 ≤ ti). If both vi and vj equal 1 then we get (ti + ai,j ≤ tj  ∧  tj – bi,j ≤ ti), which is 
exactly the simple temporal relation between nodes i and j. Figure 4 shows how the 
domains from the previous example (Figure 1) will look after filtering out the infeasi-
ble values by making the above constraint model arc consistent. We assume that 
shipPiston (the bottom node) is a valid node and MaxTime = 70. Black nodes are 
valid; validity of white nodes is not decided yet. Notice weak domain pruning of time 
variables in the white nodes caused by a disjunctive character of the problem. Actu-
ally, the left most path (with buyTube) cannot be selected due to time constraints but 
this is not discovered by making the constraints arc consistent. 
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Fig. 4. Domain filtering using the constraint model 

To improve domain filtering we propose to always propagate the temporal  
constraint even if the validity status of the node is not yet decided. If the temporal 
constraint is violated then we set some validity variable to 0 (if possible, otherwise a 
failure is detected). We will describe now the filtering rules that propagate changes of 
domains between the constrained variables, namely, the values that violate the con-
straint are removed from the domains. Let d(x) be the domain of variable x, that is, a 
set of values, and for sets A and B, A • B = {a • b | a ∈ A ∧ b ∈ B} for any binary 
operation • such as + or –. 

Assume that arc (i, j) is a part of a parallel branching, so in the solution either both 
nodes i and j are valid and the temporal relation must hold, or both nodes are invalid 
and the temporal relation does not play any role (the domains of temporal variables 
are irrelevant provided that they are non-empty). Hence, we can always propagate the 
temporal relation provided that we properly handle its violation. Let 
UP = d(tj) ∩ (d(ti) + 〈ai,j, bi,j〉). The following filtering rule is applied whenever d(ti) 
changes: 
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 d(tj) ← UP if UP ≠ ∅ 
 d(vj) ← d(vj) ∩ {0} if UP = ∅. (4) 

Note that UP = ∅ means violation of the temporal relation which is accepted only if 
the nodes are invalid. If the nodes are valid then a failure is generated because the 
above rule makes the domain of the validity variable empty. Symmetrically, let 
DOWN = d(ti) ∩  (d(tj) – 〈ai,j, bi,j〉). The following filtering rule is applied whenever 
d(tj) changes: 

 d(ti) ← DOWN if DOWN ≠ ∅ 
 d(vi) ← d(vi) ∩ {0} if DOWN = ∅. (5) 

The following example demonstrates the effect of above filtering rules. Assume that 
the initial domain of temporal variables is 〈0, 70〉, the validity of nodes is not yet de-
cided, and there are arcs (i, j) and (j, k) with temporal constraints [10, 30] and [20, 20] 
respectively. The original constraints do not prune any domain, while our extended 
filtering rules set the domains of temporal variables ti, tj, and tk to 〈0, 40〉, 〈10, 50〉, 
and 〈30, 70〉 respectively. If the initial domain is 〈0, 20〉 then the original constraints 
again prune nothing, while our extended filtering rules deduce that the participating 
nodes are invalid (we assume that logical constraints in the form vx = vy are also  
present). 

The propagation of temporal constraints in the alternative branching is more com-
plicated because we do not know which arc is used in the solution. Therefore, the  
filtering rule uses a union of pruned domains proposed by individual arcs (from non-
invalid nodes) which is similar to constructive disjunction of constraints. Let x be the 
principal node of a fan-in alternative sub-graph and y1,…, yk be all branching nodes. 
We first show how domains of the branching nodes are propagated to the principal 
node. Let UP = d(tx) ∩ ∪j = 1,…,k{(d(tyj)+〈ayj,x, byj,x〉) | d(vyj) ≠ {0}}. The following filter-
ing rule is applied whenever any d(tyj) or d(vyj) changes: 

 d(tx) ← UP if UP ≠ ∅  
 d(vx) ← d(vx) ∩ {0} if UP = ∅. (6) 

It may happen that set UP is not an interval but a set of intervals. Then we may use an 
interval hull which makes filtering less time and space consuming but a smaller num-
ber of inconsistent values is filtered out.  

The propagation from d(x) to d(yj) is done exactly like the DOWN propagation  
described above (rule (5)) and similar filtering rules can be designed for fan-out alter-
native sub-graphs. Again, the main advantage of these rules is stronger pruning in 
comparison with the original constraints as we shall show using the example from 
Figure 4. In particular, if we propagate from weldTube to buyTube and clearTube, we 
obtain 〈0, 0〉 and 〈0, 48〉 as new domains of corresponding temporal variables. Now, if 
we propagate through the other alternative branching going to buyTube from top, we 
deduce that this node is invalid because the corresponding temporal constraint is vio-
lated and hence d(vbuyTube) ← {0}. Consequently, all remaining nodes are valid and we 
achieved global consistency for both validity and temporal variables. Unfortunately, 
the proposed filtering rules do not guarantee global consistency in general. Figure 5 
shows a nested TNA which is arc consistent, that is, the proposed filtering rules do 
not remove any inconsistent value from the current domains. However, there does not 
exist any solution to the problem. 
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Fig. 5. Locally consistent nested TNA with no solution 

As we shall show below, weak domain filtering of polynomial consistency tech-
niques such as arc consistency is inevitable for (nested) TNAs because the problem of 
deciding existence of feasible assignment is in fact NP-complete. 

Proposition 3: The problem of deciding whether there exists an assignment of times 
and 0/1 values to all nodes of the (nested) TNA in such a way that all temporal and 
branching constraints are satisfied is NP-complete. 

Proof: The problem is obviously in NP, because it suffices to guess the assignment 
and test its feasibility, which can be done in linear time in the number of arcs. For the 
NP-hardness, we shall show that the subset sum problem, which is known to be NP-
complete [6], can be reduced (in the polynomial time) to our assignment problem. The 
subset sum problem is this: given a set of positive integers Zi and integer K, does the 
sum of some subset of {Zi | i = 1,…,n} equal to K? We can construct the following 
nested TNA, where the validity status of the black node is set to 1 and temporal 
annotation of arcs is [0,0] with the exception of n arcs annotated by [Zi, Zi]  and one 
arc annotated by [K,K] (Figure 6). Visibly, the subset sum problem has a solution if 
and only if there exists a feasible assignment of temporal and validity variables of the 
constructed nested TNA. The selection of the subset of integers is identical to the 
choice of alternative branches in the graph. The temporal constraints guarantee that 
the sum of selected integers equals K (the distance between the leftmost and rightmost 
node according to the top path).                                                                                     ■ 

…

[0,0] [K,K] 

[Z1, Z1] [Z2, Z2] [Zn, Zn]

ALT ALT ALT ALT ALT ALT

 

Fig. 6. Subset sum problem formulated as a Nested TNA 

Nested TNAs can be seen from the point of view of disjunctive temporal networks 
[13] so a similar solving approach can be applied to obtain a consistent network. First, 
we find all solutions to the nested P/A assignment problem. Each solution defines a 
sub-graph of the Nested TNA which is a simple temporal network (STN) for which a 
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consistency can be achieved in polynomial time [5] via path consistency or using all-
pairs-shortest-path algorithms. So, in the second step we make all obtained STNs 
temporally consistent (if possible) or mark inconsistent STNs. Finally, we restrict the 
domains of temporal and validity variables in the following way. If a node is not 
present in any of consistent STNs then the node is made invalid. If a node is present 
in all consistent STNs then the node is made valid. Finally, the temporal domain for a 
non-invalid node is obtained by union of temporal domains of this node in all 
consistent STNs where the node is present. This constructive approach has been used 
in [8] for Temporal Planning Networks, but it has a problem if the number of 
generated STNs is too large. For example the problem from Figure 6 requires 2n STNs 
to be explored. Hence, the worst case time of the method is exponential in the number 
of nodes. 

We shall describe now a different algorithm which will compute the temporal do-
mains of all vertices in such a way, that every value in every temporal domain is con-
tained in some feasible solution. Let each edge (i, j) in a Nested TNA be labelled by 
set Sij ⊆ 〈0, MaxTime〉 of admissible values for the distance between nodes i and j. 
Initially, this set corresponds to interval [ai,j, bi,j] specifying the temporal constraint. 
The proposed algorithm runs in two stages. In the first stage the sequence of decom-
position steps used to construct the Nested TNA is followed in the reverse order (this 
sequence can be found algorithmically in polynomial time for any Nested TNA as 
shown in [2]). In each composition step in which a parallel or alternative sub-graph 
with principal vertices x and y and (not invalid) branching vertices z1, … , zk (if k = 1 
then the type of branching is irrelevant) is replaced by a single edge (x, y), the set Sxy 
is computed in the following way: 

• Sxy = ∩ i=1,..,k (Sxzi
 + Sziy) if the replaced sub-graph contains parallel branching, 

• Sxy = ∪ i=1,..,k (Sxzi
 + Sziy) if the replaced sub-graph contains alternative branching. 

We shall show later that the input TNA has a feasible solution if and only if the final 
base graph with only nodes s and e (into which the input TNA is composed in the end 
of the first stage) has a feasible solution. If there is no feasible solution, the algorithm 
terminates. 

In the second stage of the algorithm, we compute restricted temporal constraints Tij 
and restricted domains of temporal variables ti containing only globally consistent 
values starting with the temporal domains in the base graph in the following way: 

d(ts) ← 〈0, MaxTime〉 ∩ (〈0, MaxTime〉 – Sse) 
d(te) ← 〈0, MaxTime〉 ∩ (〈0, MaxTime〉 + Sse) 
Tse  ← Sse. 

After that the base graph is decomposed again into the input graph. During each de-
composition step in which a parallel or alternative sub-graph with principal vertices x 
and y and branching vertices z1, … ,zk replaces a single edge (x, y), the sets Txzi

 and 

Tziy and the domains d(zi) for all 1 ≤ i ≤ k are computed in the following way: 
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• Txzi
 = {u ∈ Sxzi

 | ∃v ∈ Sziy : u + v ∈ Txy} 

• Tziy = {v ∈ Sziy | ∃u ∈ Sxzi
 : u + v ∈ Txy} 

• d(tzi
) = {b ∈ 〈0, MaxTime〉 | ∃a ∈ d(x) ∃c ∈ d(y) : (b – a) ∈ Txzi

 ∧ (c – b) ∈ Tziy } 

If d(tzi
) is empty then vertex zi is invalid so we can set d(vzi

) ← {0} and remove the 
vertex from the graph. This may happen only for alternative branching due to the way 
how Sxy is computed from Sxzi

 and Sziy. Moreover, because Sxy is non-empty, at least 
one node zi can still be valid so if any node is made invalid this is not propagated 
elsewhere in the graph. Notice also that Txzi

 ⊆ Sxzi
, Tziy ⊆ Sziy,and Txzi

 and Tziy contain 
only those pairs of values which sum up to some value in Txy. We shall show now that 
only values participating in at least one feasible solution are ever inserted into the 
temporal domain of any vertex. First, let us define the notion of a feasible solution. 

Definition 7: Let G = (V, E) be a nested TNA where each edge (i, j) ∈ E is labelled 
by set Sij ⊆ 〈0, MaxTime〉 of admissible values. An assignment t : V → 〈0, MaxTime〉 
of temporal values (natural numbers) to vertices and t : V → {0, 1}〉 of validity vari-
ables is called a feasible solution if for every edge (i, j) ∈ E we have 

(vi * vj = 1) ⇒ (tj – ti ∈ Sij). 

Remark: In the input TNA we assume that all sets Sij are intervals, however for aux-
iliary TNA’s constructed by the algorithm general sets will appear on newly intro-
duced edges. Moreover, without lost of generality we can assume these sets to be 
within the interval 〈0, MaxTime〉. 

Lemma 1: Let G = (V, E) be a TNA and let G’ = (V’, E’) be a TNA which originates 
from G by replacing a parallel/alternative sub-graph with principal vertices x and y 
and branching vertices z1, … , zk by edge (x, y). Then 

a) if t : V → 〈0, MaxTime〉 is a feasible solution for G then t’ : V’ → 〈0, MaxTime〉 
obtained by restricting t to V’ (which is a subset of V) is a feasible solution for 
G’, and 

b) if t’ : V’ → 〈0, MaxTime〉 is a feasible solution for G’ then there is a feasible so-
lution t : V → 〈0, MaxTime〉 for G which is an extension of t’ from V’ to V. 

 

Proof: (part a) The only edge that has to be checked is the newly introduced edge 
(x, y) originating from the composition operation. If vx = 0 or vy = 0 then the temporal 
constraint is satisfied trivially. So let us assume vx = vy = 1. 

• If the replaced sub-graph contains parallel branching then vzi = 1 for all 1 ≤ i ≤ k and 
thus the feasibility of t implies tzi – tx ∈ Sxzi and ty – tzi ∈ Sziy for all 1 ≤ i ≤ k. Sum-
ming up these two relations gives us ty – tx ∈ Sxzi + Sziy (for every 1 ≤ i ≤ k) and thus 
ty – tx ∈ ∩ (Sxzi + Sziy) which is by definition Sxy and so the temporal constraint on 
(x, y) is satisfied. 

• If the replaced sub-graph contains alternative branching then vzi = 1 for exactly 
one index i, 1 ≤ i ≤ k, and thus the feasibility of t implies tzi – tx ∈ Sxzi and 
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ty – tzi ∈ Sziy for this particular i. Summing up these two relations gives us 
ty – tx ∈ Sxzi + Sziy (for the chosen i) and thus ty – tx ∈ ∪ (Sxzi + Sziy) which is by 
definition Sxy and so the temporal constraint on (x, y) is satisfied. 

(part b) The edges that have to be checked in this case are the deleted edges (x, zi) and 
(zi, y). If vx = 0 or vy = 0 then also vzi = 0 for all 1 ≤ i ≤ k and all temporal constraints 
on the deleted edges are satisfied trivially. So let us again assume vx = vy = 1. 

• If the replaced sub-graph contains parallel branching then vzi = 1 for all 1 ≤ i ≤ k. 
The feasibility of t’ implies t’y – t’x ∈ ∩ (Sxzi + Sziy). Let us pick an arbitrary in-
dex i, 1 ≤ i ≤ k. The fact that t’y – t’x ∈ Sxzi + Sziy means that there exist u ∈ Sxzi 
and v ∈ Sziy such that t’y – t’x = u + v. Now setting tzi = t’x + u = t’y – v proves the 
desired result because tzi – t’x = u ∈ Sxzi and ty – tzi = y ∈ Sziy and so the temporal 
constraints on (x, zi) and (zi, y) are satisfied. 

• If the replaced sub-graph contains alternative branching then vzi = 1 for exactly 
one index i, 1 ≤ i ≤ k, and we have a freedom of choice to determine which one 
(there must be at least one such vertex). The feasibility of t’ implies 
t’y – t’x ∈ ∪ (Sxzi + Sziy). Let us fix an arbitrary index i, 1 ≤ i ≤ k, such that 
t’y – t’x ∈ Sxzi + Sziy (at least one such i clearly exists) and set vzi = 1 and vzj = 0 
for all j ≠ i. This means that there exist u ∈ Sxzi and v ∈ Sziy such that 
t’y – t’x = u + v. Now setting tzi = t’x + u = t’y – v satisfies, in a similar fashion as 
above, the temporal constraints on (x, zi) and (zi, y). The temporal constraints on 
(x, zj) and (zj, y) for j ≠ i are satisfied trivially since vzj = 0.                                  ■ 

 

Corollary: The input TNA has a feasible solution if and only if the final base graph 
with only nodes s and e (into which the input TNA is composed in the end of the first 
stage) has a feasible solution. 

 

Now let us state (and prove) the properties of the second stage of the algorithm. 
 

Lemma 2: Let G = (V, E) be a TNA and let G’ = (V’, E’) be a TNA which originates 
from G by replacing edge (x, y) by a parallel/alternative sub-graph with principal ver-
tices x and y and branching vertices z1, … , zk. Then if every pair of values a ∈ d(tx),  c 
∈ d(ty) such that (c – a) ∈ Txy participates in at least one feasible solution for G then 
also every pair of values a ∈ d(tx), b ∈ d(tzi) such that (b – a) ∈ Txzi (and every pair of 
values b ∈ d(tzi), c ∈ d(ty) such that (c – b) ∈ Tziy) participates in at least one feasible 
solution for G’. 

Proof: Let us consider an arbitrary a ∈ d(tx), b ∈ d(tzi) such that (b – a) = u ∈ Txzi. By 
the definition of Txzi, there exists (at least one) v ∈ Tziy such that (u + v) ∈ Txy. Let us 
define W = {v ∈ Tziy | u + v ∈ Txy} and C = {a + u + v | v ∈ W}. By the definition of 
d(tzi) there must be at least one c ∈ C such that c ∈ d(ty). However, now (c – a) = 
(u + v) ∈ Txy and so, by the assumption, the pair of values a, c participates in at least 
one feasible solution for G. Clearly, this solution can be extended by value b ∈ d(tzi) 
without violating the temporal constraints on edges (x, zi) and (zi, y).                          ■ 
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Proposition 4: After the second stage of the algorithm terminates, the temporal do-
mains in the input graph fulfil global consistency. 

Proof: The base graph clearly satisfies the assumptions of Lemma 2, namely every 
pair of values x ∈ d(ts) and y ∈ d(te) such that (y – x) ∈ Tse participate in at least one 
feasible solution for the base graph. Thus, due to Lemma 2, also every graph obtained 
by a single decomposition step satisfies the statement of Lemma 2. Moreover, every 
value b newly introduced into the domain d(tzi) has at least one value a in d(tx) and 
one value c in d(ty) such that (b – a) ∈ Txzi and (c – b) ∈ Tziy. Thus every such value b 
participates in at least one feasible solution.                                                                  ■ 
 

Since we give no implementation details here, it is not possible to determine the exact 
time complexity of the presented algorithm. However, it should be clear, that any rea-
sonable implementation will work in time polynomial in the size of the input TNA 
and the upper bound MaxTime, thus providing a pseudo-polynomial algorithm with 
respect to the size of input data (the constant MaxTime is part of the input but coded 
in binary and thus taking log MaxTime bits). 

5   Conclusions 

The paper studies temporal reasoning in Temporal Networks with Alternatives which 
are useful to model alternative process in production scheduling. We showed that add-
ing simple temporal constraints to Nested TNAs makes the problem of deciding exis-
tence of logically and temporally feasible solution NP-complete. We presented a 
straightforward constraint model and stronger filtering rules that can remove, via arc 
consistency, some infeasible values from variables’ domains, but still cannot guaran-
tee global consistency. We also presented an algorithm for achieving global consis-
tency with pseudo-polynomial time complexity. Note that this algorithm is applicable 
only to Nested TNAs while the proposed filtering rules work for any TNA. This paper 
focuses on theoretical aspects of reasoning with Nested TNAs, the next step is em-
pirical evaluation of the presented techniques. 
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Abstract. We propose Soft Constraint Logic Programming based on
semirings as a mean to easily represent and evaluate trust propagation
in small-world networks. To attain this, we model the trust network
adapting it to a weighted and-or graph, where the weight on a connector
corresponds to the trust and confidence feedback values among the con-
nected nodes. Semirings are the parametric and flexible structures used
to appropriately represent trust metrics. Social (and not only) networks
present small-world properties: most nodes can be reached from every
other by a small number of hops. These features can be exploited to re-
duce the computational complexity of the model. In the same model we
also introduce the concept of multitrust, which is aimed at computing
trust by collectively involving a group of trustees at the same time.

1 Introduction

Decentralized trust management [16] provides a different paradigm of security
in open and widely distributed systems where it is not possible to rely solely
on traditional security measures as cryptography. The reasons usually are that
the nodes appear and disappear from the community, span multiple adminis-
trative domains, their direct interactions are limited to a small subset of the
total number of nodes and, moreover, there is no globally trusted third party
that can supervise the relationships. For this reason an expressive computational
model is needed to derive a trust value among the individuals of a community,
represented as a trust network, in the following abbreviated as TN.

Three main contributions are given in this paper: first of all we propose the
concept of multitrust [8], i.e. when the relationship of trust concerns one trustor
and multiple trustees in a correlated way (the name recalls the multicast de-
livery scheme in networks). An example in peer-to-peer networks is when we
download a file from multiple sources at the same time, and we need a reliability
feedback for the whole download process. This result depends on the integrated
characteristics of all the sources.
� Supported by the MIUR PRIN 2005-015491.
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Secondly, we outline a model to solve trust propagation: we represent TNs
(the same model applies also to related terms in literature as trust graph, web
of trust or social network [25]) as and-or graphs [17] (i.e. hypergraphs), map-
ping individuals to nodes and their relationships to directed connectors. The
and connectors (i.e. hyperarcs) represent the event of simultaneously trusting
a group of individuals at the same time. The costs of the connectors symbol-
ize how trustworthy the source estimates the destination nodes, that is a trust
value, and how accurate is this trust opinion, i.e. a confidence value. Afterwards,
we propose the Soft Constraint Logic Programming (SCLP) framework [1,5] as
a convenient declarative programming environment in which to solve the trust
propagation problem for multitrust. In SCLP programs, logic programming is
used in conjunction with soft constraints, that is, constraints which have a pref-
erence level associated to them. In particular, we show how to translate the
and-or graph obtained in the first step into a SCLP program, and how the
semantics of such a program computes the best trust propagation tree in the
corresponding weighted and-or graph. SCLP is based on the general structure
of a c-semiring [1] (or simply, semiring) with two operations × and +. The ×
is used to combine the preferences, while the partial order defined by + (see
Section 2) is instead used to compare them.

Therefore, we can take advantage of the semiring structure to model and com-
pose different trust metrics. SCLP is also parametric w.r.t. the chosen semiring:
the same program deals with different metrics by only choosing the proper semir-
ing structure. In [7], a similar model has been proposed for routing.

We practically solve the problem with CIAO Prolog [9] (modelling SCLP),
a system that offers a complete Prolog system supporting ISO-Prolog , but,
at the same time its modular design allows both restricting and extending the
basic language. Thus, it allows both to work with subsets of Prolog and to
work with programming extensions implementing functions, higher-order (with
predicate abstractions), constraints, fuzzy sets, objects, concurrency, parallel and
distributed computations, sockets, interfaces to other programming languages
(C, Java, Tcl/Tk) and relational databases and many more.

The third and final contribution is represented by a practical implementa-
tion of the framework on a random small-world network [14] generated with
the Java Universal Network/Graph Framework (JUNG) [18]. The small-world
phenomenon describes the tendency for each entity in a large system to be sep-
arated from any other entity by only a few hops. Moreover, these networks a
high clustering coefficient, which quantifies how close a vertex and its neighbors
are from being a clique (i.e. a high coefficient suggests a clique). As a result, the
problem can be divided in subproblems, each of them representing the topology
of a clique, and then trying to connect these group of nodes together. The small
number of hops allows to cut the solution search after a small threshold, thus
improving the search even in wide networks.

This paper is organized as follows: in Sec. 2 we present some background
information about trust metrics, the small-world phenomenon in social networks
and the SCLP framework. Section 3 depicts how to represent a TN with an and-
or graph, while in Sec. 4 we describe the way to pass from and-or graphs to SCLP
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programs, showing that the semantic of SCLP program is able to compute the
best trust propagation in the corresponding and-or graph. In Sec. 5 we describe
the practical implementation of the framework for a small-world network, and
we suggest how to improve the performance. At last, Section 6 draws the final
conclusions and outlines intentions about future works.

2 Background

Trust, Multitrust and Metrics. No universal agreement on the definition of
trust and reputation concepts has been yet reached in the trust community [16].
However, we adopt the following definitions: trust describes a nodes belief in
another nodes capabilities, honesty and reliability based on its own direct expe-
riences, while reputation is based on recommendations received also from other
nodes. Even if closely related, the main difference between trust and reputation
is that trust systems produce a score that reflects the relying party’s subjec-
tive view of an entity’s trustworthiness, whereas reputation systems produce an
entity’s (public) reputation score as seen by the whole community.

Trust and reputation ranking metrics have primarily been used for public key
certification, rating and reputation systems part of online communities, peer-to-
peer networks, semantic web and also mobile computing fields [16,22,25]. Each of
these scenarios favors different trust metrics. Trust metrics are used to predict
trust scores of users by exploiting the transitiveness property of relationships
(thus, we are considering transitive trust chains): if two nodes, say node A and
node C in Fig. 1a, do not have a direct edge connecting them, the TN can be
used to generate an inferred trust rating. A TN represents all the direct trust
relationship in a community. An example of a classical TN is provided in Fig. 1a,
where we can see that trust is usually represented as a 1-to-1 relationship between
only two individuals: the edges are directed from the trustor to the trustee. If
node A knows node B, and node B knows node C, then A can use the path
to compose the inferred rating for C: therefore, we use transitive relationships.
This process is called trust propagation by concatenation, and it is a necessary
requirement since in most settings a user has a direct opinion only about a very
small portion of nodes in the TN. Therefore, trust needs to be granted also
by basing on third-party recommendations: if A trusts B, she/he can use the
recommendation about C provided by B [16]. How to compose this information
depends on the trust metrics of the links, i.e. it specifically depends on the
problem [16] (e.g. by multiplying together the trust scores of the links A-B and
B-C).

We introduce the concept of multitrust [8], which extends the usual trust
relationship from couples of individuals to one trustor and multiple trustees in a
correlated way: is the set of entities is denoted with E, the multitrust relationship
Rmt involves a trustor t ∈ E and a set of trustees T ⊂ E. The correlation in Rmt

can be defined in terms of time (e.g. at the same time), modalities (e.g. with the
same behavior) or collaboration among the trustees in T w.r.t. t. For example
if we consider time, the trustor could simultaneously trust multiple trustees, or,
considering instead a modality example, the trustor could contact the trustees
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with the same communication device, e.g. by phone. Consequently, this trust
relation Rmt is 1-to-n (no more 1-to-1 as in all the classical trust systems [25])
and can be created by concurrently involving all the interested parties in a shared
purpose. A general application can be for team effectiveness [10]: suppose we have
a decentralized community of open-source programmers and we want to know if
a subset of them can be reliably assigned to a new project.

A team of 3 programmers, for example, could significantly enhance the soft-
ware product since we suppose they will accurately collaborate together by join-
ing their skills and obtaining a better result w.r.t. 3 independent developers.
Thus, the group will be more trustworthy than the single individuals, and even
the final trustees will benefit from this group collaboration: they will be reached
with an higher score during the propagation of trust in the TN.

Small-World Networks and Trust. A social network, where nodes represent
individuals and edges represent their relationships, exhibits the small-world phe-
nomenon if any two individuals in the network are likely to be connected through
a short sequence of intermediate acquaintances. In [24] the authors observe that
such graphs have a high clustering coefficient (like regular graphs) and short
paths between the nodes (like random graphs).

These networks are divided in sub-communities (i.e. in clusters) where few in-
dividuals, called the pivots [13], represent the bridges towards different groups.
These connections are termed weak ties in the sociology literature [13], as op-
posed to strong ties that connect a vertex to others in its own sub-community.
Weak ties are important because the individuals inside other communities will
bring in greater value due to different knowledge and perspectives, while people
in the same group would generally tend to have the same knowledge. An example
of small-world network is represented in Sec. 5.

Soft Constraint Logic Programming. The SCLP framework [1,5,12], is
based on the notion of c-semiring introduced in [4,6]. A semiring S is a tu-
ple 〈A, +,×, 0, 1〉 where A is a set with two special elements (0, 1 ∈ A) and
with two operations + and × that satisfy certain properties: + is defined over
(possibly infinite) sets of elements of A and thus is commutative, associative,
idempotent, it is closed and 0 is its unit element and 1 is its absorbing element;
× is closed, associative, commutative, distributes over +, 1 is its unit element,
and 0 is its absorbing element (for the exhaustive definition, please refer to [6]).
The + operation defines a partial order ≤S over A such that a ≤S b iff a+ b = b;
we say that a ≤S b if b represents a value better than a. Other properties related
to the two operations are that + and × are monotone on ≤S , 0 is its minimum
and 1 its maximum, 〈A,≤S〉 is a complete lattice and + is its lub. Finally, if
× is idempotent, then + distributes over ×, 〈A,≤S〉 is a complete distributive
lattice and × its glb.

Semiring-based Constraint Satisfaction Problems (SCSPs) [1] are constraint
problems where each variable instantiation is associated to an element of a c-
semiring A (to be interpreted as a cost, level of preference, . . . ), and constraints
are combined via the × operation and compared via the ≤S ordering. Vary-
ing the set A and the meaning of the + and × operations, we can represent
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many different kinds of problems, having features like fuzziness, probability, and
optimization. Moreover, since the cartesian product of semirings is still a semir-
ing [1], trust can be propagated by considering several criteria (i.e. metrics) at
the same time, trying to optimize all the different scores.

Constraint Logic Programming (CLP) [15] extends Logic Programming by
replacing term equalities with constraints and unification with constraint solving.
The SCLP framework extends the classical CLP formalism in order to be able
to handle also SCSP [4,6] problems. In passing from CLP to SCLP languages,
we replace classical constraints with the more general SCSP constraints where
we are able to assign a level of preference to each instantiated constraint (i.e. a
ground atom). To do this, we also modify the notions of interpretation, model,
model intersection, and others, since we have to take into account the semiring
operations and not the usual CLP operations. The fact that we have to combine
several refutation paths (a refutation is a finite derivation and the corresponding
semiring value a [1]) when we have a partial order among the elements of the
semiring (instead of a total one), can be fruitfully used in the context of this
paper when we have an graph/hypergraph problems with incomparable costs
associated to the edges/connectors. In fact, in the case of a partial order, the
solution of the problem of finding the best path/tree should consist of all those
paths/trees whose cost is not “dominated” by others.

Table 1. A simple example of an SCLP program

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

A simple example of a SCLP program over the semiring 〈N, min, +, +∞, 0〉,
where N is the set of non-negative integers and D = {a, b, c}, is represented in
Tab. 1. The intuitive meaning of a semiring value like 3 associated to the atom
r(a) (in Tab. 1) is that r(a) costs 3 units. Thus the set N contains all possible
costs, and the choice of the two operations min and + implies that we intend to
minimize the sum of the costs. This gives us the possibility to select the atom
instantiation which gives the minimum cost overall. Given a goal like s(x) to
this program, the operational semantics collects both a substitution for x (in
this case, x = a) and also a semiring value (in this case, 2) which represents
the minimum cost among the costs for all derivations for s(x). To find one
of these solutions, it starts from the goal and uses the clauses as usual in logic
programming, except that at each step two items are accumulated and combined
with the current state: a substitution and a semiring value (both provided by
the used clause). The combination of these two items with what is contained
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in the current goal is done via the usual combination of substitutions (for the
substitution part) and via the multiplicative operation of the semiring (for the
semiring value part), which in this example is the arithmetic +. Thus, in the
example of goal s(X), we get two possible solutions, both with substitution
X = a but with two different semiring values: 2 and 3. Then, the combination
of such two solutions via the min operation give us the semiring value 2.

3 From Trust Networks to and-or Graph

An and-or graph [17] is defined as a special type of hypergraph. Namely, instead
of arcs connecting pairs of nodes there are hyperarcs connecting an n-tuple
of nodes (n = 1, 2, 3, . . .). The arcs are called connectors and they must be
considered as directed from their first node to all the other nodes in the n-tuple.
Formally an and-or graph is a pair G = (N, C), where N is a set of nodes and
C is a set of connectors defined as C ⊆ N ×

⋃k
i=0 N i.

When k > 1 we have an and connector since it reaches multiple destinations
at the same time; all the different connectors rooted in the same ni node can be
singly chosen, i.e. or connectors. Note that the definition allows 0-connectors,
i.e. connectors with one input and no output node. In the following of the expla-
nation we will also use the concept of and tree [17]: given an and-or graph G, an
and tree H is a solution tree of G with start node nr, if there is a function g map-
ping nodes of H into nodes of G such that: i) the root of H is mapped in nr, and
ii) if (ni0 , ni1 , . . . , nik

) is a connector of H , then (g(ni0), g(ni1), . . . , . . . , g(nik
))

is a connector of G.
Informally, a solution tree of an and-or graph is analogous to a path of an

ordinary graph: it can be obtained by selecting exactly one outgoing connector
for each node. If all the chosen connectors are 1-connectors, then we obtain a
plain path and not a tree.

In Fig. 1b we directly represent a TN for multitrust as a weighted and-or
graph, since for its characteristics, this translation is immediate. Each of the
individuals can be easily cast in a corresponding node of the and-or graph. In
Fig. 1b we represent our trustor as a black node (i.e. n1) and the target trustees
as two concentric circles (i.e. n4 and n5). Nodes n2 and n3 can be used to
propagate trust.

To model the trust relationship between two nodes we use 1-connectors, which
correspond to usual TN arcs: the 1-connectors in Fig. 1b are (n1, n2), (n1, n3),
(n2, n3), (n2, n4), (n3, n4), (n3, n5), (n4, n5). We remind that the connectors are
directed, and thus, for example the connector (n4, n5) means that the input node
n4 trusts the individual represented by n5. Moreover, since we are now dealing
with multitrust, we need to represent the event of trusting more individuals
at the same time. To attain this, in Fig. 1b we can see the three 2-connectors
(n1, n2, n3), (n2, n3, n4) and (n3, n4, n5): for example, the first of these hyper-
connectors defines the possibility for n1 to trust both n2 and n3 in a correlated
way. In Fig. 1b we draw these n-connectors (with n > 1) as curved oriented
arcs where the set of their output nodes corresponds to the output nodes of the
1-connectors traversed by the curved arc. Considering the ordering of the nodes
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Fig. 1. a) A classical trust network, and b) an and-or graph representing multitrust:
the weights on the connectors represent trust and confidence values (i.e. 〈t, c〉)

in the tuple describing the connector, the input node is at the first position and
the output nodes (when more than one) follow the orientation of the related arc
in the graph (in Figure 1b this orientation is lexicographic). Notice that in the
example we decided to use connectors with dimension at most equal to 2 (i.e.
2-connectors) for sake of simplicity. However it is possible to represent whatever
cardinality of trust relationship, that is among a trustor and n trustees (i.e. with
a n-connector).

So far, we are able to represent an entire TN with a weighted and-or graph,
but still we need some algebraic framework to model our preferences for the
connectors, to use during trust propagation as explained in the following. For
this purpose we decided to use the semiring structure. Each of the connectors in
Fig. 1b is labeled with a couple of values 〈t, c〉: the first component represents
a trust value in the range [0, 1], while the second component represents the
accuracy of the trust value assignment (i.e. a confidence value), and it is still
in the range [0, 1]. This parameter can be assumed as a quality of the opinion
represented instead by the trust value; for example, a high confidence could
mean that the trustor has interacted with the target for a long time and then
the correlated trust value is estimated with precision. A trust value close to 1
indicates that the output nodes of the connector have gained a good feedback in
terms of their past performance and thus are more trustworthy, whereas a low
trust value means the nodes showed relatively poor QoS in the past and are rated
with low score. In general, we could have trust expressed with a k-dimensional
vector representing k different metrics; in this example we have 2-dimensional
vectors. Therefore, the semiring we use to propagate trust in the network is based
on the path semiring [21]: Strust = 〈〈[0, 1], [0, 1]〉, +p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉 +p 〈tj , cj〉 =

⎧⎪⎨
⎪⎩
〈ti, ci〉 if ci > cj ,

〈tj , cj〉 if ci < cj ,

〈max(ti, tj), ci〉 if ci = cj .

〈ti, ci〉 ×p 〈tj , cj〉 = 〈titj , cicj〉
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Along the same path, the ×p computes the scalar product of both trust and
confidence values, and since the considered interval is [0, 1], they both decrease
when aggregated along a path. When paths are instead compared, +p chooses
the one with the highest confidence. If the two opinions have equal confidences
but different trust values, +p picks the one with the highest trust value. In this
way, the precision of the information is more important than the information
itself. If the k-dimensional costs of the connectors are not elements of a totally
ordered set (therefore, not in our trust/confidence example), it may be possible
to obtain several Pareto-optimal solutions.

Notice that other semirings can be used to model other trust metrics: for
example, the Fuzzy Semiring 〈[0, 1], max, min, 0, 1〉 can be used if we decide that
the score of a trust chain corresponds to the weakest of its links. Or we can
select the Weighted Semiring, i.e. 〈R+, min, +,∞, 0〉, to count negative referrals
in reputation systems as in e-Bay [16].

Collecting the trust values to assign to the labels of the connectors is out of the
scope of this work, but they can be described in terms of specificity/generality di-
mensions (if we relay on one or more aspects) and subjective/objective dimensions
(respectively personal, as e-Bay, or formal criteria, as credit rating) [16]. However,
for n-connectors with n ≥ 2, we can suppose also the use of a composition opera-
tion ◦ which takes n k-dimensional trust metric vectors (e.g. tvalue1, . . . , tvaluen)
as operands and returns the estimated trust value for the considered n-connector
(tvaluenc): ◦ (tvalue1, tvalue2, . . . , tvaluen) −→ tvaluenc.

This ◦ operation can be easily found for objective ratings, since they are the
result of applying formal aspects that have been clearly defined, while automat-
ing the computation of subjective ratings is undoubtedly more difficult. Notice
also, as said before, that such a ◦ operation is not only a plain “addition” of
the single trust values, but it must take into account also the “added value” (or
“subtracted value”) derived from the combination effect. For example, consid-
ering the connector (n3, n4, n5) in Fig. 1b, its cost, i.e. 〈0.9, 0.93〉, significantly
benefits from simultaneously trusting n4 and n5, since both the trust/confidence
values of (n3, n4) and (n3, n5) are sensibly lower (i.e. respectively 〈0.8, 0.8〉 and
〈0.7, 0.88〉). The reason could be that n3 has observed many times the collabo-
ration between n4 and n5 (i.e. a high confidence value) and this collaboration
is fruitful. On the other hand, n2 does not consider n3 and n4 to be so “col-
laborative” since the trust label of (n2, n3, n4), i.e. 〈0.8, 0.81〉, is worse than the
costs of (n2, n3) and (n2, n4) (i.e. 〈0.9, 0.94〉 and 〈0.8, 0.88〉). In the example in
Fig. 1b we supposed to use subjective ratings, and therefore the trust values
for 2-connectors do not follow any specific ◦ function. An example of objective
rating could be the average mean function for both trust and confidence values
of all the composing 1-connectors.

Notice that sometimes trust is computed by considering all the paths be-
tween two individuals and then by applying a function in order to find a single
result [22] (e.g. the mean of the trust scores for all the paths). This could be ac-
complished by using the expectation semiring [11], where the + operation of the
semiring is used to aggregate the trust values across paths, as proposed in [21].
In this paper, we decide to keep + as a “preference” operator for distinct paths
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(as proposed for classical SCLP, see Sec. 2) in order to choose the best one, since
in Sec. 5.1 we suggest how to reduce the complexity of the framework by visiting
less paths as possible. Thus, aggregating the trust values of the paths is not so
meaningful when trying to reduce the number of visited paths at the same time.

4 and-or Graphs Using SCLP

In this Section, we explain how to represent and-or graphs with a program in
SCLP. This decision is derived from two important features of this programming
framework: i) SCLP is a declarative programming environment and, thus, is
relatively easy to specify a lot of different problems; ii) the c-semiring structure
is a very parametric tool where to represent several and different trust metrics. As
a translation example we consider the and-or graph in Fig. 1b: by only changing
the facts in the program, it is possible to translate every other tree.

Using this framework, we can easily find the best trust propagation over the
hypergraph built in Sec. 3. In fact, our aim is to find the best path/tree simulta-
neously reaching all the desired trustees, which is only one of the possible choices
when computing trust [22]: according to multipath propagation, when multiple
propagation paths (in this case, trees) exist between A and C (in this case, sev-
eral trustees at the same time), all their relative trust scores can be composed
together in order to have a single result balanced with every opportunity. To
attain multipath propagation we need to use the expectation semiring [11] as
explained in Sec. 3.

In SCLP a clause like c(ni, [nj , nk]):- tvalue, means that the graph has con-
nector from ni to nodes nj and nk with tvalue cost. Then, other SCLP clauses
can describe the structure of the path/tree we desire to search over the graph.
Notice that possible cycles in the graph are automatically avoided by SCLP,
since the × of the semiring is a monotonic operation.

As introduced in Sec. 1, we use CIAO Prolog [9] as the system to practically
solve the problem. CIAO Prolog has also a fuzzy extension, but it does not
completely conform to the semantic of SCLP defined in [5] (due to interpolation
in the interval of the fuzzy set). For this reason, we inserted the cost of the
connector in the head of the clauses, differently from SCLP clauses which have
the cost in the body of the clause.

From the and-or graph in Fig. 1b we can build the corresponding CIAO
program of Tab. 2 as follows. First, we describe the connectors of the graph with
facts like

connector(trustor, [trustees list], [trust value, condifence value])

e.g. the fact connector(n1, [n2, n3], [0.8, 0.79]) represents the connector of the
graph (n1, n2, n3) with a trust/confidence value of 〈0.8, 0.79〉 (ni represents the
name of the node). The set of connector facts is highlighted as Connectors in
Tab. 2, and represents all the trust relationships of the community. The Leaves
facts of Tab. 2 represent the terminations for the Prolog rules. Their cost must
not influence the final trust score, and then it is equal to the unit element
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Table 2. The CIAO program representing the and-or graph in Fig. 1b

C
o

n
n

ec
to

rs

2)

3)

4)

L
ea

ve
s leaf([n1], [1,1]). 

leaf([n2], [1,1]). 
leaf([n3], [1,1]). 
leaf([n4], [1,1]). 
leaf([n5], [1,1]).

connector(n1,[n2], [0.9,0.9]). 
connector(n1,[n3], [0.5,0.4]). 
connector(n1,[n2,n3], [0.8,0.79]).
connector(n2,[n3], [0.9,0.94]). 
connector(n2,[n4], [0.8,0.88]). 
connector(n2,[n3,n4], [0.8,0.82]).
connector(n3,[n4], [0.8,0.8]). 
connector(n3,[n5], [0.7,0.88]). 
connector(n3,[n4,n5], [0.9,0.93]).
connector(n4,[n5], [0.2,0.98]).

1)
trustrel(X,[X], [T,C]):-
        leaf([X], [T,C]).

trustrel(X, Z, [T,C]):-
        connector(X,W, [T1,C1]),
        trustrelList(W, Z, [T2,C2]),
        times([T1,C1], [T2,C2], [T,C]).

trustrelList([],[], [1,1]).

trustrelList([X|Xs],Z, [T,C]):-
        trustrel(X, Z1, [T1,C1]),
        append(Z1, Z2, Z),
        trustrelList(Xs, Z2, [T2,C2]),
        times([T1,C1], [T2,C2], [T,C]).

:- module(trust,_,_). 
:- use_module(library(lists)). 
:- use_module(library(aggregates)). 
:- use_module(library(sort)).

times([T1, C1], [T2, C2], [T, C]) :-    
      T is (T1 * T2),       
      C is (C1 * C2).

plus([], MaxSoFar, MaxSoFar).

plus([[T,C]|Rest], [MT,MC], Max):-
      C > MC, plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C = MC, T > MT, 
      plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C < MC, 
      plus(Rest, [MT,MC], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
      C = MC, 
      T < MT, 
      plus(Rest, [MT,MC], Max).

trust(X, Y, Max):-  
      findall([T,C], trustrel(X, Y, [T,C]), L1), 
      plus(L1,[0,0],Max).

p
lu

s
ti

m
es

tr
u

st

of the × operator of the Strust semiring presented in Sec. 3, i.e. 〈1, 1〉. The
times and plus clauses in Tab. 2 respectively mimic the × and + operation of
Strust = 〈〈[0, 1], [0, 1]〉, +p,×p, 〈0, 0〉, 〈1, 1〉〉 explained in Sec. 3. The trust clause
is used as the query to compute trust in the network: it collects all the results
for the given source and destinations, and then finds the best trust/confidence
couple by using the plus clauses.

At last, the rules 1-2-3-4 in Tab. 2 describe the structure of the relationships
we want to find over the social network: with these rules it is possible to found
both 1-to-1 relationships (i.e. for classical trust propagation) or 1-to-n relation-
ships (i.e. for multitrust propagation, described in Sec. 2). Rule 1 represents a
relationship made of only one leaf node, Rule 2 outlines a relationship made of
a connector plus a list of sub-relationships with root nodes in the list of the des-
tination nodes of the connector, Rule 3 is the termination for Rule 4, and Rule
4 is needed to manage the junction of the disjoint sub-relationships with roots
in the list [X |Xs]. When we compose connectors and tree-shaped relationships
(Rule 2 and Rule 4 ), we use the times clause to compose their trust/confidence
values together.

To solve the search over the and-or graph problem it is enough to perform a
query in Prolog language: for example, if we want to compute the cost of the best
relationship rooted at n1 (i.e. n1 is the starting trustor) and having as leaves the
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n1 n 2

<0.9,0.9>

n3

<0.9,0.94>

n 5

n 4

<0.9,0.93> 0.9 x
0.9 x
0.9 =
0.72 

Confidence 
     result:

0.9   x
0.94 x
0.93 =
0.78 

Trust 
result:

Fig. 2. The best trust relationship that can be found with the query
trust(n1, [n4, n5], [T, C]) for the program in Tab. 2

nodes representing the trustees (i.e. n4 and n5), we have to perform the query
trust(n1, [n4, n5], [T, C]), where T and C will be respectively instantiated with
the trust and confidence values of the found relationship. The output for this
query corresponds to the cost of the tree in Fig. 2, i.e. 〈0.72, 0.78〉. Otherwise, if
we are interested in knowing the best trust relationship between one trustor (e.g.
n1) and only one trustee (e.g. n4), as in classical trust propagation, we should
perform the query trust(n1, [n4], [T, C]).

Notice that if the ratings of our trust relationships are objective (see Sec. 3),
it is possible to directly program in CIAO also the ◦ operator explained in Sec. 3,
and it would consequently be possible to build the n-connectors with n > 1 in
the program, by applying the ◦ operator on the interested 1-connectors. In the
program in Tab. 2 all the n-connectors are instead directly expressed as facts,
and not automatically built with clauses.

5 An Implementation of the Model

To develop and test a practical implementation of our model, we adopt the Java
Universal Network/Graph Framework [18], a software library for the modeling,
analysis, and visualization of data that can be represented as a graph or network.
The WattsBetaSmallWorldGenerator included in the library is a graph generator
that produces a random small world network using the beta-model as proposed
in [23]. The basic ideas is to start with a one-dimensional ring lattice in which
each vertex has k-neighbors and then randomly rewire the edges, with probability
β, in such a way that a small-world networks can be created for certain values of β
and k that exhibit low characteristic path lengths and high clustering coefficient.

We generated the small-world network in Fig. 3 (with undirected edges) and
then we automatically produced the corresponding program in CIAO (consid-
ering the edges as directed), as in Sec. 4. The relative statistics reported in
Fig. 3 suggest the small-world nature of our test network: a quite high clustering
coefficient and a low average shortest path.

With respect to the program in Tab. 2 we added the Trust Hops < �2 ·
Avg Shortest Path� constraint: in this case, Trust Hops < 9, which is also the
diameter of the network (see Fig. 3). This constraint limits the search space
and provides a good approximation at the same time: in scale-free networks, the
average distance between two nodes is logarithmic in the number of nodes [24],
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Nodes Edges Clustering Avg. SP Min Deg Max Deg. Avg. Deg Diameter

150 450 0.44 4.26 4 8 6 9

Fig. 3. The test small-world network generated with JUNG [18] and the corresponding
statistics

i.e. every two nodes are close to each other. Therefore, this hop constraint can be
successfully used also with large networks, and limiting the depth to twice the
average shortest path value still results in a large number of alternative routes.
We performed 50 tests on the graph in Fig. 3, and in every case the propagation
between two nodes was computed within 5 minutes. Clearly, even if the results
are promising and the small-world nature allows them to be repeated also on
larger graph due to the logarithmic increase of average shortest path statistics,
we need some improvements to further relax the Trust Hops constraint. These
improvements are suggested in Sec. 5.1.

5.1 Complexity Considerations

The representation of TN given in Sec. 3 can lead to an exponential time solution
because of the degree of the nodes: for each of the individuals we have a con-
nector towards each of the subsets of individuals in their social neighborhood,
whose number is O(2d), where d is the out-degree of the node. The complexity
of the tree search can be reduced by using Tabled Constraint Logic Program-
ming (TCLP), i.e. with tabling (or memoing) techniques (for example, tabling
efficiency is shown in [19]).

The calls to tabled predicates are stored in a searchable structure together
with their proven instances, and subsequent identical calls can use the stored
answers without repeating the computation. The work in [20] explains how to
port Constraint Handling Rules (CHR) to XSB (acronym of eXtended Stony
Brook), and in particular its focus is on technical issues related to the integra-
tion of CHR with tabled resolution. CHR is a high-level natural formalism to
specify constraint solvers and propagation algorithm. At present time, from the
XSB system it is possible to load a CHR package and to use its solving function-
alities combined with tabling. This could be the promising framework where to
solve QoS routing problems, since soft constraint satisfaction have already been
successfully implemented in the CHR system [2].

The procedure of finding such a goal table for each single sub-community is
much less time consuming than finding it for a whole not-partitioned social net-
work. For this reason we can take advantage from the highly clustered nature
of small-worlds. In Fig. 4 it is represented the community of people practising
sports; the community is clustered into three sub-groups: Football, Basketball
and Rugby. The individuals that represent the bridges among these groups are
people practising two different sports, and are called pivots ; their very impor-
tant relationships are instead called weak ties (as we explained in Sec. 2), and
can be used to widen the knowledge from a sub-group towards the rest of the
small-world. If Alice (a pivot in the Basketball cluster) wants to retrieve a trust



44 S. Bistarelli and F. Santini

Alice
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Rugby

Basketball

Bob

Charlie

Dave

Fig. 4. The small-world of sports

score about Bob (a pivot in the Football cluster), she could ask to Charlie and
Charlie to Dave (pivots in the Rugby cluster). Therefore, the pivots should
store a “tabled vision” of their community to improve the performances for
intra-community relationships.

6 Conclusions

We have defined the concept of multitrust and we have described a method to
represent and solve the trust propagation problem with the combination of and-
or graph and SCLP programming. Our framework can be fruitfully applied to
have a quick and elegant formal-model where to compute the results of different
trust metrics; in this paper we used trust and confidence, thus a precision esti-
mation of the trust observation. We think that multitrust can be used in many
real-world cases: trusting a group of individuals at the same time can lead to
different conclusions w.r.t. simply aggregating together the trust values of the
single individuals in the group. Then, we have provided a practical implementa-
tion of the model and we have tested it on a small-world social network, where
all the individuals are reachable among themselves within few hops. The tests
show that the framework can be used with small/medium networks with few
hundreds of nodes due to small-world properties, but the performance need to
be further improved. However, we provided many suggestions on how to reduce
the complexity, and we will address these enhancements in future works.

A first improvement could be the use of memoization/tabling techniques, to
filter out redundant computations. Then we plan also to extend SCLP in order
to deal with branch and bound and to immediately prune the not promising
partial solutions. These techniques can benefit from the small-world nature of
the social networks, since the community is always partitioned in sub-groups
with pivot individuals: we can have many small tables of goals instead of a big
one for the whole network.
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Our future goal is to find a structure able to aggregate distinct trust paths in
a single trust value, i.e. to compute multipath propagation (e.g. an average cost
of the independent paths). A solution could be represented by the expectation
semiring [11], which is however somehow in contrast with pruning algorithms.
At last, we would like to introduce the notion of “distrust” in the model and to
propagate it by using the inverse of the semiring × operator [3].
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Abstract. Asynchronous Backtracking (ABT) is a reference algorithm for Dis-
tributed CSP (DisCSP). In ABT, agents assign values to their variables and ex-
change messages asynchronously and concurrently. When an ABT agent sends
a backtracking message, it continues working without waiting for an answer. In
this paper, we describe a case showing that this strategy may cause some ineffi-
ciency. To overcome this, we propose ABThyb, a new algorithm that results from
adding synchronization points to ABT. We prove that ABThyb is correct, complete
and terminates. We also provide an empirical evaluation of the new algorithm on
several benchmarks. Experimental results show that ABThyb outperforms ABT.

1 Introduction

In recent years, there is an increasing interest for solving problems in which infor-
mation is distributed among different agents. In standard Constraint Satisfaction Prob-
lems (CSP), centralized solving is assumed, so it is inadequate for problems requiring
a true distributed resolution. This has motivated the new Distributed CSP (DisCSP)
framework, where constraint problems with elements (variables, domains, constraints)
distributed among automated agents which cannot be centralized for different reasons
(prohibitive translation costs or security/privacy issues) are modelled and solved.

When solving DisCSP, all agents cooperate for finding a globally consistent solution,
that is an assignment involving all variables that satisfies every constraint. To achieve
this, agents assign their variables and exchange messages on these assignments, which
allows them to check their consistency with respect to problem constraints. Several
synchronous and asynchronous procedures have been proposed [2,3,6,7,8].

Broadly speaking, a synchronous algorithm is based on the notion of privilege, a to-
ken that is passed among agents. Only the agent that has the privilege is active, while the
rest of agents are waiting 1. When the active agent terminates, it passes the privilege to
another agent, which now becomes the active one. These algorithms have a low degree
of parallelism, but agents receive up to date information. Alternatively, asynchronous
algorithms allow agents to be active concurrently. Agents may assign their variables

� Supported by the Spanish project TIN2006-15387-C03-01.
1 Except for special topological arrangements of the constraint graph. See [3] for a synchronous

algorithm where several agents are active concurrently.
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and exchange messages asynchronously. These algorithms show a high degree of par-
allelism, but the information that an agent knows about other agents is less up to date
than in synchronous procedures.

In this paper we study the effect of adding synchronization points to Asynchronous
Backtracking (ABT), a reference algorithm for DisCSP [9]. In ABT, agents assign val-
ues to their variables and exchange messages asynchronously and concurrently. When
an ABT agent sends a backtracking message, it continues working without waiting for
an answer. This strategy may be costly in some cases because performing two tasks con-
currently could be inefficient if there is a dependency relation between them. We iden-
tify a case in which ABT’s efficiency can be improved if, after backtracking, an agent
waits for receiving a message showing the effect of backtracking on higher priority
agents. We implement this idea on ABThyb, a new ABT-like algorithm, that combines
asynchronous and synchronous elements to avoid redundant messages. We show that
ABThyb is correct, complete and terminates. Experimental results indicate that ABThyb

outperforms ABT on three different benchmarks.
This paper is organized as follows. First, we recall the definition of DisCSP, we

describe ABT and identify a source of inefficiency in it. Then, we present ABThyb, a new
hybrid algorithm that combines asynchronous and synchronous elements. We prove
some properties of the new algorithm, which is evaluated on three different benchmarks.
Finally, we extract some conclusions from this work.

2 Preliminaries

A Constraint Satisfaction Problem (X ,D, C) involves a finite set of variables X , each
taking values in a finite domain, and a finite set of constraints C. A constraint on a subset
of variables forbids some combinations of values that these variables can take. A solu-
tion is an assignment of values to variables which satisfies every constraint. Formally,

• X = {x1, . . . , xn} is a set of n variables;
• D = {D(x1), . . . , D(xn)} is a collection of finite domains; D(xi) is the initial set

of possible values for xi;
• C is a finite set of constraints. A constraint Ci on the ordered subset of variables

var(Ci) = (xi1 , . . . , xir(i) ) specifies the relation prm(Ci) of the permitted combi-
nations of values for the variables in var(Ci). Clearly, prm(Ci) ⊂

∏
xik

∈var(Ci)

D(xik
). An element of prm(Ci) is a tuple (vi1 , . . . , vir(i)), vik

∈ D(xik
).

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSP is defined by a 5-tuple (X ,D, C,A, φ), where X , D and C are as before, and

• A = {1, . . . , p} is a set of p agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C in two
disjoint subsets, Cintra = {Ci|∀xj , xk ∈ var(Ci), φ(xj) = φ(xk)}, and Cinter =
{Ci|∃xj , xk ∈ var(Ci), φ(xj) �= φ(xk)}, called intraagent and interagent constraint
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sets, respectively. An intraagent constraint Ci is known by the agent owner of var(Ci),
and it is unknown by the other agents. Usually, it is considered that an interagent con-
straint Cj is known by every agent that owns a variable of var(Cj) [9].

A solution of a DisCSP is an assignment of values to variables satisfying every con-
straint. DisCSPs are solved by the coordinated action of agents, which communicate by
exchanging messages. It is assumed that the delay of a message is finite but random.
For a given pair of agents, messages are delivered in the order they were sent.

For simplicity purposes, and to emphasize the distribution aspects, we assume that
each agent owns exactly one variable. We identify the agent number with its variable
index (∀xi ∈ X , φ(xi) = i). From this assumption, all constraints are interagent con-
straints, so C = Cinter and Cintra = ∅. Furthermore, we assume that all constraints are
binary. A constraint is written Cij to indicate that it binds variables xi and xj .

3 The Asynchronous Backtracking Algorithm

Asynchronous backtracking (ABT) [7,9] was a pioneering algorithm for DisCSP solv-
ing, its first version dates from 1992. ABT is an asynchronous algorithm, that allows
agents to act asynchronous and concurrently. An ABT agent makes its own decisions,
informs other agents about them, and no agent has to wait for the others’ decisions.
The algorithm computes a global consistent solution (or detects that no solution ex-
ists) in finite time; its correctness and completeness have been proved [9,2]. ABT re-
quires constraints to be directed. A binary constraint causes a directed link between
the two constrained agents: the value-sending agent, from which the link starts, and the
constraint-evaluating agent, at which the link ends. To make the network cycle-free,
there is a total order among agents, which is followed by the directed links.

The ABT algorithm is executed by each agent, which keeps its own agent view and
nogood store. Considering a generic agent self , its agent view is the set of values that
self believes are assigned to higher priority agents (connected to self by incoming
links). Its nogood store keeps nogoods received by self as justifications of inconsis-
tent values. ABT agents exchange three types of messages: ok? (assignments), ngd
(nogoods) and adl (link request). An stp message indicates that there is no solution.

When the algorithm starts, each agent assigns its variable, and sends the assignment
to its neighboring agents with lower priority. When self receives an assignment, self
updates its agent view with the new assignment, removes inconsistent nogoods and
checks the consistency of its current assignment with the updated agent view.

When self receives a nogood, it is accepted if the nogood is consistent with self ’s
agent view (for the variables in the nogood, their values in the nogood and in self ’s
agent view are equal). Otherwise, self discards the nogood as obsolete. If the nogood
is accepted, the nogood store is updated, causing self to search for a new consistent
value (since the received nogood forbids its current value). When an agent cannot find
any value consistent with its agent view, either because of the original constraints or
because of the received nogoods, new nogoods are generated from its agent view and
each one sent to the closest agent involved in it. This operation causes backtracking.

There are several versions of ABT, depending on how new nogoods are generated.
The simplest form is to send the complete agent view as nogood [10]. In [2], when an
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agent has no consistent values, it resolves its nogoods following a procedure described
in [1]. In this paper we consider this last version.

The majority of messages exchanged by ABT agents are ok? and ngd. While ok?
messages are always accepted, some ngd messages may be discarded as obsolete. ABT
could save some work if these discarded messages were not sent. Although the sender
agent cannot detect which messages will become obsolete when reaching the receiver,
it is possible to avoid sending those which are redundant.

When agent j sends a ngd message, it performs a new assignment and informs lower
priority agents, without waiting for the reception of any message showing the effect
of that ngd on higher priority agents. This behavior can generate inefficiency in the
following situation. If k sends a ngd message to j causing a domain wipe-out in j,
then j sends a ngd message to some previous agent i, deleting the value of i in its agent
view. If j takes the same value as before and sends an ok? message to k before receiving
the new value for i, k will find again the same inconsistency so it will send the same
nogood to j in a new ngd message. Since j has forgotten i’s value, j will discard the
ngd message as obsolete, sending again its value to k in an ok? message. The process
is repeated generating useless messages, until some higher variable changes its value
and the corresponding ok? message arrives at j and k. In the next section we propose a
new ABT version to avoid sending these redundant messages.

4 The ABThyb Algorithm

To avoid the behavior described above, we present ABThyb, a hybrid algorithm that
combines asynchronous and synchronous elements. ABThyb behaves like ABT when no
backtracking is performed: agents take their values asynchronously and inform lower
priority agents. However, when an agent has to backtrack, it does it synchronously as
follows. If k has no value consistent with its agent view, it sends a ngd message to j and
enters a waiting state. In this state, k has no assigned value, and it does not send out any
message. Any received ok? message is accepted, updating k’s agent view accordingly.
Any received ngd message is treated as obsolete, since k has no value assigned. Agent
k leaves the waiting state when receiving one the following messages:

1. An ok? message that breaks the nogood sent by k.
2. An ok? message from j, the receiver of the last ngd message.
3. A stp message informing that the problem has not solution.

The justification for leaving the waiting state is as follows,

1. An ok? message breaking the nogood confirms that the ngd message has caused
a change in a higher priority agent such that the system escapes from the nogood.
Agent k has to leave the waiting state, returning to ordinary ABT operation.

2. An ok? message from j, considers the situation in which k has a more updated
information than j when k sends the ngd and enters the waiting state. While j does
not receive the updated information, it will reject the ngd message as obsolete and
resend its value to k in an ok? message. After receiving it, if k remains in the wait-
ing state the communication with j might be broken, because j may say nothing
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when receiving the updated information, k will have no notice of this updated in-
formation and the algorithm would be incomplete. So k has to leave the waiting
state, just to rediscover the same nogood, send it to j and enter the waiting state
again. This loop breaks when the updated information reaches j: it will no longer
reject the ngd because it will not be obsolete according to its updated agent view.

3. A stp message indicates that the empty nogood has been generated somewhere, so
every agent has to finish its execution.

At this point, ABThyb switches to ABT. ABThyb detects that a DisCSP is unsolvable
if during the resolution an empty nogood is derived. Otherwise, ABThyb claims that it
has found a solution when no messages are traveling through the network (quiescence).

The ABThyb algorithm appears in Figure 1. The sets Γ− and Γ+ are formed by
higher and lower priority agents, respectively. A nogood ng is written in its ordered
form, ng : x1 = a ∧ x2 = b ⇒ x3 �= c. The conjunction at the left-hand side of ⇒ is
written as lhs(ng), while the assignment at the right-hand side is written as rhs(ng).

The differences between ABThyb and ABT [2] could be seen following variable wait.
When the agent initiates a backtracking, sending a ngd message, this nogood is mem-
orized in lastNogood and wait takes value true (line 6 of Backtrack). From this
point on, the agent is in the waiting state, in which it accepts any ok? message, updat-
ing its agent view (line 1 of ProcessInfo), but it discards any ngd message (line
7 of ABT-Hyb). Since the agent has no value, no ok? message departs from it (line
5 of ProcessInfo and line 2 of SetLink). Since the agent does not try to get a
new value, no ngd message departs from it (line 5 of ProcessInfo). The agent can
leave the waiting state after (1) receiving an ok? message breaking lastNogood, (2)
receiving an ok? message from the agent destination of the ngd message (lines 3 and 4
of ProcessInfo), or (3) receiving a stp message (line 8 of ABT-Hyb).

4.1 Correctness, Completeness and Termination

Regardless of synchronous points, ABThyb inherits the good properties of ABT, namely
correctness, completeness and termination. To prove them, we start with some lemmas.

Lemma 1. No ABThyb agent will continue in a waiting state forever.

Proof. (By induction). In ABThyb an agent enters the waiting state after sending a
ngd message to a higher priority agent. The first agent in the ordering will not enter
the waiting state because no ngd message departs from it. Suppose that no agent in
1, 2, . . . , k− 1 is waiting forever, and suppose that agent k enters the waiting state after
sending a ngd message to j (1 ≤ j ≤ k− 1). We will show that k will not be forever in
the waiting state. When j receives the ngd message, there are two possible states:

1. j is waiting. Since no agent in 1, 2, . . . , k − 1 is waiting forever, j will leave the
waiting state at some point. If xj has a value consistent with its new agent view, j
will send an ok? message to k. If xj has no value consistent with its new agent view,
j will backtrack and enter again the waiting state. This can be done a finite number
of times (because there is a finite number of values per variable) before finding a
consistent value or discovering that the problem has no solution (generating a stp
message). In both cases, agent k will leave the waiting state.
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procedure ABT-Hyb()
1 myV alue ← empty; end ← false; wait ← false;
2 CheckAgentView();
3 while (¬end) do
4 msg ← getMsg();
5 switch(msg.type)
6 ok? : ProcessInfo(msg);
7 ngd : if ¬wait then ResolveConflict(msg);
8 stp : wait ← false; end ← true;
9 adl : SetLink(msg);

procedure CheckAgentView(msg)
1 if ¬consistent(myV alue, myAgentV iew) then
2 myV alue ← ChooseValue();
3 if (myV alue) then for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue);
4 else Backtrack();

procedure ProcessInfo(msg)
1 Update(myAgentV iew, msg.Assig);
2 if wait then
3 if (msg.Sender ∈ rhs(lastNogood)) ∨ (msg.Sender ∈ lhs(lastNogood) ∧ msg.Assig �= lastNogood[msg.Sender])
4 then wait ← false;
5 if ¬wait then CheckAgentView();

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then
2 CheckAddLink(msg);
3 add(msg.Nogood, myNogoodStore); myV alue ← empty;
4 CheckAgentView();
5 else if Coherent(msg.Nogood, self ) then sendMsg:ok?(msg.Sender, myV alue);

procedure Backtrack()
1 newNogood ← solve(myNogoodStore);
2 if (newNogood = empty) then
3 end ← true; sendMsg:Stop(system);
4 else
5 sendMsg:ngd(newNogood);
6 lastNogood ← newNogood; wait ← true;

function ChooseValue()
1 for each v ∈ D(self) not eliminated by myNogoodStore do
2 if consistent(v, myAgentV iew) then return (v);
3 else add(xj = valj ⇒ self �= v, myNogoodStore); /*v is inconsistent with xj ’s value */
4 return (empty);

procedure Update(myAgentV iew, newAssig)
1 add(newAssig, myAgentV iew);
2 for each ng ∈ myNogoodStore do
3 if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)
1 for each var ∈ lhs(nogood) ∪ agents do
2 if nogood[var] �= myAgentV iew[var] then return false;
3 return true;

procedure SetLink(msg)
1 add(msg.sender, Γ+(self));
2 if ¬wait then sendMsg:ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if (var /∈ Γ−(self)) then
3 sendMsg:addl(var, self);
4 add(var, Γ−(self));
5 Update(myAgentV iew, var ← varV alue);

Fig. 1. The ABThyb algorithm for asynchronous backtracking search



Improving ABT Performance by Adding Synchronization Points 53

2. j is not waiting. The ngd message could be:
(a) Obsolete in the value of xj . In this case, there is an ok? message traveling from

j to k that has not arrived at k yet. After receiving such a message, k will leave
the waiting state.

(b) Obsolete not in the value of xj . In this case, j resends xj value to k in an ok?
message. After receiving such a message, k will leave the waiting state.

(c) Not obsolete. The current value of xj is forbidden by the received nogood, so
a new value is tried. If j finds another value consistent with its agent view,
xj takes it and sends an ok? message to k, which leaves the waiting state.
Otherwise, j backtracks to a previous agent in the ordering, and enters the
waiting state. Since no agent in 1, 2, . . . , k − 1 is waiting forever, j will leave
the waiting state at some point. As explained in the point 1 above, this causes
that k leaves the waiting state as well.

Therefore, we conclude that agent k will not continue in a waiting state forever. �

Lemma 2. If an ABThyb agent is in a waiting state, the network is not quiescent.

Proof. An agent is in a waiting state after sending a ngd message. Because Lemma 1,
this agent will leave the waiting state in finite time. This is done after receiving an ok?
or stp message. Therefore, if there is an agent in a waiting state, the network cannot be
quiescent at least until one of those messages has been produced. �

Lemma 3. In ABThyb, a nogood that is discarded as obsolete because the receiver is
in a waiting state, will be resent to the receiver until the sender realizes that it has been
solved, or the empty nogood has been derived.

Proof. If agent k sends a nogood to agent j that is in a waiting state, this nogood is
discarded and k enters the waiting state. From Lemma 1, no agent will continue in a
waiting state forever, so k will leave that state in finite time. This is done after receiving,

• An ok? message from j. If this message does not solve the nogood, it will be
generated and resend to j. If it solves it, this nogood is not generated, exactly in the
same way as ABT does.

• An ok? message from an agent higher than j, breaking the nogood. Since the no-
good is no longer active, it is not resent again.

• A stp message. The process terminates without solution.

So the nogood is sent again until it is solved or the empty nogood is generated. �

Proposition 1. ABThyb is correct.

Proof. From Lemma 2, ABThyb reaches quiescence when no agent is in a waiting state.
From this fact, ABThyb correctness derives directly from ABT correctness: when the
network is quiescent all agents satisfy their constraints, so their current assignments
form a solution. If this would not be the case, at least one agent would detect a violated
constraint and it would send a message, breaking the quiescence assumption. �

Proposition 2. ABThyb is complete and terminates.
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Proof. From Lemma 3, the synchronicity of backtracking in ABThyb does not cause
to ignore any nogood. Then, ABThyb explores the search space as ABT does. From
this fact, ABThyb completeness comes directly from ABT completeness. New nogoods
are generated by logical inference, so the empty nogood cannot be derived if there is a
solution. Total agent ordering causes that backtracking discards one value in the highest
variable reached by a ngd message. Since the number of values is finite, the process will
find a solution if it exists, or it will derive the empty nogood otherwise.

To see that ABThyb terminates, we have to prove that no agent falls into an infinite
loop. This comes from the fact that agents cannot continue in a waiting state forever
(Lemma 1), and that ABT agents cannot be in an endless loop. �

Instead of adding synchronization points, we can avoid resending redundant ngd mes-
sages with exponential-space algorithms. Let us assume that self stores every nogood
sent, while it is not obsolete. When a domain wipe-out occurs in self , if the new gener-
ated nogood is equal to one of the stored nogoods, it is not sent. This avoids self send-
ing identical nogoods until some higher agent changes its value and the corresponding
ok? arrives at self . But this requires exponential space, since the number of nogoods
generated could be exponential in the number of agents with higher priority. A similar
idea appears in [8] for the asynchronous weak-commitment algorithm.

4.2 Comparison with ABT

In practice, ABThyb shows a better performance than ABT. However, ABThyb does not
always require less messages than ABT for solving a particular instance. In the follow-
ing we provide an example of this. Let us consider the instance depicted in Figure 2. It
has 7 agents, each holding a variable, their domains are indicated, and with equality and
disequality constraints. For ABT and ABThyb, we assume the same network conditions
(i.e. messages are received in the same order for both algorithms), the same agent or-
dering (lexicographical, from A1 to A7) and the same value ordering (values are tried in
the order they appear in Figure 2). Initially, each agent assigns its variable with the first
value of its domain and sends the corresponding ok? message to its descendants. When
all arrive, except the message coming from A1, the assignment, agent view and nogood
store of every agent appear in Figure 3. The situation is the same for both algorithms.

At this point, A7 has a conflict (referred as α): no value of x7 is consistent with its
agent view, so A7 backtracks (it resolves its nogood store and generates a new nogood,
which is sent to the closest agent involved). After this decision, ABT and ABThyb behave
differently. ABT behavior is summarized in Figure 4. In step 1, A7 sends a ngd message
to A6, implementing the backtracking initiated by A7. This message will arrive at its

Fig. 2. Instance with 7 agents, each holding a variable. Domains and constraints are indicated.
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A1 A2 A3 A4 A5 A6 A7
x1 ← b x2 ← a x3 ← b x4 ← b x5 ← b x6 ← b x7 ← no value

x2 = a x2 = a, x3 = b x2 = a, x4 = b x2 = a, x5 = b x2 = a, x6 = b

x2 = a ⇒ x7 �= a
x6 = b ⇒ x7 �= b

Fig. 3. First assignments, agent views and nogood stores of the agents after receiving the corre-
sponding ok? messages (except the ok? coming from A1). Same situation for ABT and ABThyb.

step #msg type from to message comments
1 1 ngd A7 A6 x2 = a ⇒ x6 �= b resolution of A7 nogood store

this message arrives at A6 after step 4
x7 ← b

2 1 ok? A1 A7 x1 = b x7 looks for a compatible value
generates nogood x1 = b ⇒ x7 �= b
resolution with x2 = a ⇒ x7 �= a
causes new nogood of step 3

3 1 ngd A7 A2 x1 = b ⇒ x2 �= a causes change in x2
4 5 ok? A2 A3 − A7 x2 = c new value of x2
5 1 ok? A6 A7 x6 = b message of step 1 arrived at A6

discarded as obsolete, because now x2 = c
value of x6 is resent to A7
a solution b, c, b, b, b, b, a is found

Fig. 4. Messages exchanged by ABT agents just after the situation depicted in Figure 3

step #msg type from to message comments
1 1 ngd A7 A6 x2 = a ⇒ x6 �= b generated by resolution of A7 nogood store, A7 is waiting

add to A6 nogood store x2 = a ⇒ x6 �= b
x6 looks for a compatible value
add to A6 nogood store x5 = b ⇒ x6 �= a

2 1 ok? A1 A7 x1 = b updates A7 agent view x1 = b
3 1 ngd A6 A5 x2 = a ⇒ x5 �= b generated by resolution of A6 nogood store, A6 is waiting

add to A5 nogood store x2 = a ⇒ x5 �= b
x5 looks for a compatible value
add to A5 nogood store x4 = b ⇒ x5 �= a

4 1 ngd A5 A4 x2 = a ⇒ x4 �= b generated by resolution of A5 nogood store, A5 is waiting
add to A4 nogood store x2 = a ⇒ x4 �= b
x4 looks for a compatible value
add to A4 nogood store x3 = b ⇒ x4 �= a

5 1 ngd A4 A3 x2 = a ⇒ x3 �= b generated by resolution of A4 nogood store, A4 is waiting
add to A3 nogood store x2 = a ⇒ x3 �= b
x4 looks for a compatible value
add to A3 nogood store x2 = a ⇒ x3 �= a

6 1 ngd A3 A2 ⇒ x2 �= a generated by resolution of A3 nogood store, A3 is waiting
add to A2 nogood store ⇒ x2 �= a, x2 ← c

7 5 ok? A2 A3 − A7 x2 = c new value of x2
agents A3 − A7 wake up
a solution b, c, b, b, b, b, a is found

Fig. 5. Messages exchanged by ABThyb agents just after the situation depicted in Figure 3

destination after step 4. In step 2, the initial ok? message coming from A1 arrives at A7.
This message causes again another conflict (referred as β) in A7, so it initiates a new
backtracking. In step 3, A7 sends a new ngd message to A2. This message causes A2

to change the value of x2 to c. A2 informs of this new assignment to A3 − A7 in step
4, using 5 ok? messages. After this, the ngd of step 1 arrives at A6. This message is
discarded as obsolete, because the new value of x2. In step 5, the value of x6 is resent to
A7. Solution b, c, b, b, b, b, a is found, requiring 9 messages since the first backtracking.
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ABThyb behavior is summarized in Figure 5. In step 1, A7 sends a ngd message to
A6, implementing the backtracking initiated by A7 as in the ABT case. Then, A7 enters
the waiting state. In step 2, the initial ok? message coming from A1 arrives at A7. Since
A7 is waiting, it just updates its agent view, without any other action. In step 3, nogood
sent in step 1 arrives at A6. This causes that x6 has no value consistent with its agent
view. A6 resolves its nogood store and generates a new nogood which is sent to A5.
A6 enters the waiting state. In steps 4, 5 and 6, the same happens to agents A5, A4,
and A3, a nogood is propagated backwards and these agents remain waiting. In step 7,
the nogood sent in step 6 arrives at A2, causing to change the value of x2, which now
takes c. In step 8, A2 informs about the new assignment of x2 with 5 ok? messages,
to A3 − A7. Solution b, c, b, b, b, b, a is found, requiring 11 messages since the first
backtracking. In this case, ABT needs less messages than ABThyb.

We have to solve two conflicts, α and β; α is discovered first and β is discovered
before α is solved. Both are solved by the same action (changing x2 to c). ABT may
start the resolution of both conflicts in parallel, while ABThyb has to solve them se-
quentially. But solving β requires less messages than solving α, so ABT may need less
messages than ABThyb to find a solution. However, if after discovering a conflict, no
second conflict is found among the involved variables, the number of messages required
by ABThyb is lower than (or equal to) the number required by ABT, as proved next.

Proposition 3. The number of messages required by ABThyb to solve a conflict is not
higher than the number of messages required by ABT to solve the same conflict, if during
the resolution of this conflict no other conflict is found among conflicting variables.

Proof. Let j and i be the agents that find the conflict and resolve it, respectively (i < j).
Let S be the set of agents {i + 1 . . . j}. We differentiate between ok? and ngd.

Regarding ngd messages, before i receives the nogood that causes to change the
value of its variable, agents in S have exchanged ngd messages. The number of the ngd
messages not discarded as obsolete (really contributing to the change of xi) is the same
in both algorithms. The number of obsolete nogoods because the receiver has a more
updated information than the sender is the same in both algorithms. In addition, ABT
may have redundant obsolete ngd (as explained in section 4), which cannot occur in
ABThyb. So the number of ngd messages in ABThyb is no higher than in ABT.

Regarding ok? messages, each ABThyb agent in S will leave the waiting state after
receiving one of the following messages: (1) an ok? from i breaking the nogood, (2)
an ok? from any other higher priority agent breaking the nogood or (3) a stp message.
Next, we count the number of messages sent by k in these cases:

(1) In ABThyb, xk takes a value consistent with the new value of xi and sends 1 ok?
message to each lower priority agent. In ABT, after backtracking, xk has to take a value
without knowing the new value of xi. This value may be consistent or inconsistent with
the new value of xi. If it is consistent, k will send 1 ok? message to each lower priority
agent. Therefore, the number of messages sent by k in both algorithms is the same. If
the value of xk is inconsistent with the new value of xi, k will send 2 ok? messages
to each lower priority agent: one message because the inconsistent value and the other
after assigning a value consistent with xi. So the number of messages sent by k in
ABThyb is not higher than the number sent in ABT.
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(2) In ABThyb, xk takes a new value before receiving the new assignment of xi. This
new value may be consistent or inconsistent. If the new value of xk is consistent, then
k will send 1 ok? message to each lower priority agent. Otherwise, it will send 2 ok?
messages to each lower priority agent. This is the same situation that happens in ABT
(see previous case). So the number of messages sent by k is the same in both algorithms.
(3) In both algorithms when agent k receives a stp message, k does not send any more
messages. Thus, the number of messages sent by k in both algorithms is the same.

So ABThyb never requires more messages than those required by ABT. �

5 Experimental Results

We have evaluated ABT and ABThyb on three benchmarks: distributed n-queens, ran-
dom binary DisCSPs and Distributed Sensor-Mobile. We compare both algorithms on
the computation effort, as the number of non concurrent constraint checks (nccc, usu-
ally used instead of computation time in distributed constraint solving [5]), and the
communication cost, as the total number of messages exchanged (msg). We have used
a discrete simulator to execute both algorithms. It randomly activates one agent at a
time, which reads all incoming messages and processes them 2, sending new messages
if needed. When the active agent terminates, a new agent is activated. If an agent detects
several justifications for a forbidden value, it follows the strategy of selecting the best
nogood (the nogood with the highest possible lowest agent involved) [2].

To measure the impact of network traffic conditions on the algorithmic performance,
we have also evaluated the algorithms introducing random delays in message delivery.
Delays are taken from a uniform distribution between 0 and 100 time units.

5.1 Distributed n-Queens

The distributed n-queens problem is the classical n-queens problem where each queen
is hold by an independent agent. We ran ABT and ABThyb for 4 dimensions of this
problem, n = 10, 15, 20, 25. Table 1 shows the results in terms of nccc and msg,
averaged over 100 executions. We observe that ABThyb is clearly better than ABT.

Table 2 reports the number of messages per type for executions without delays. We
observe that ABThyb outperforms ABT for each type. The number of obsolete ngd mes-
sages in ABThyb decreases one order of magnitude with respect to the same type of
messages in ABT. However, the global improvement goes beyond the savings in obso-
lete ngd, because ok? and ngd messages also decrease to a larger extent. This is due
to the following collective effect. When an ABT agent sends a ngd, it tries to get a new
consistent value without knowing the effect that backtracking causes in higher priority
agents. If it finds such a consistent value, it informs to lower priority agents using ok?
messages. If it happens that this value is not consistent with new values that backtrack-
ing causes in higher priority agents, these ok? would be useless, and new ngd would
be generated. ABThyb tries to avoid this situation. When an ABThyb agent sends a ngd
message, it waits until it receives notice of the effect of backtracking in higher priority

2 In both algorithms agents process messages by packets, instead of one by one, because perfor-
mance improves [11].
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Table 1. Number of non concurrent constraint checks and messages required by ABT and ABThyb

to solve instances of the distributed n-queens, without (left) and with (right) message delays

ABT ABThyb d-ABT d-ABThyb

n nccc msg nccc msg nccc msg nccc msg
10 2,223 739 1,699 502 2,117 907 1,601 614
15 56,412 13,978 32,373 6,881 50,163 17,201 30,891 9,611
20 11,084,012 2,198,304 6,086,376 995,902 9,616,876 2,695,008 5,135,193 1,403,472
25 3,868,136 693,832 1,660,448 271,092 3,206,581 1,421,903 1,580,132 777,187

Table 2. The number of messages per type exchanged by ABT and ABThyb to solve instances of
the distributed n-queens problem without message delays

ABT ABThyb

n ok? ngd obs ngd (%) ok? ngd obs ngd (%)
10 546 193 67 (34.7%) 409 93 7 (7.5%)
15 10,029 3,949 1,515 (38.4%) 5,547 1,334 111 (8.3%)
20 1,609,727 588,578 239,763 (40.7%) 817,304 178,598 15,354 (8.6%)
25 518,719 175,113 76,771 (43.8%) 229,159 41,934 4,381 (10.4%)

agents. When it leaves the waiting state, it tries to get a consistent value. At this point,
it knows some effect of the backtracking on higher priority agents, so the new value
will be consistent with it. The new value has more chance to be consistent with higher
priority agents, and its ok? messages will be more likely to make useful work.

In Table 1 (right) we have results for ABT and ABThyb with delays. Again, ABThyb is
substantially better than ABT. We observe that the presence of delays degrades perfor-
mance of both algorithms. ABThyb deteriorates slightly more than ABT. This behavior
can be explained using the results of Table 2. With delays, the number of obsolete ngd
(useless messages) in ABThyb increases, degrading the collective effect previously men-
tioned. Anyway, ABThyb remains substantially better than ABT in presence of delays.

Table 3. The number of messages per type exchanged by ABT and ABThyb to solve instances of
the distributed n-queens problem with message delays

d-ABT d-ABThyb

n ok? ngd obs ngd (%) ok? ngd obs ngd (%)
10 663 244 129 (52.8%) 478 136 29 (21.5%)
15 11,972 5,231 2,925 (55.9%) 7,902 1,709 496 (29.0%)
20 1,908,769 786,239 461,285 (58.7%) 1,155,783 247,689 107,992 (43.6%)
25 1,421,904 555,237 365,901 (65.9%) 631,752 145,435 76,208 (52.4%)

5.2 Random Problems

Uniform binary random CSPs are characterized by 〈n, d, p1, p2〉 where n is the number
of variables, d is the number of values per variable, p1 is the network connectivity
defined as the ratio of existing constraints, and p2 is the constraint tightness defined as
the ratio of forbidden value pairs. We generated instances with 16 agents and 8 values
per agent, considering three classes, sparse, medium and dense (p1=0.2, p1=0.5 and
p1=0.8). The largest differences between algorithms appear at the complexity peak.
Table 4 reports results averaged over 250 executions (50 instances × 5 random seeds)
of ABT and ABThyb without (left) and with delays (right), at the complexity peak.
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Table 4. Number of non concurrent constraint checks and messages required by ABT and ABThyb

for random DisCSPs, without (left) and with (right) message delays

ABT ABThyb d-ABT d-ABThyb

p1 nccc msg nccc msg nccc msg nccc msg
0.20 5,065 6,010 4,595 5,724 4,385 6,375 4,168 5,875
0.50 36,552 33,016 26,558 26,178 29,547 38,097 25,088 30,444
0.80 90,933 63,209 56,566 45,587 68,855 78,557 55,501 58,081

Table 5. Number of messages of ABT and ABThyb for random DisCSPs without message delays

ABT ABThyb

p1 ok? ngd adl obs ngd (%) ok? ngd adl obs ngd (%)
0.20 4,378 1,606 26 394 (24.53%) 4,298 1,401 26 138 (9.8%)
0.50 25,739 7,238 39 2,442 (33.73%) 21,378 4,762 38 873 (18.33%)
0.80 49,624 13,566 19 5,411 (39.8%) 37,647 7,921 19 1,939 (24.5%)

Regarding results without message delays, ABThyb is always better than ABT for the
three classes, in both computation effort and communication cost. The improvement of
ABThyb over ABT increases when p1 increases. ABThyb saves 4.8%, 20.7% and 27.9%
of the total number of messages that ABT sends for sparse, medium and dense classes,
respectively. This is due to the collective effect already described for the distributed
n-queens. This is confirmed by Table 5, that contains the number of messages per type.
Waiting states in ABThyb allow agents to have a more updated information.

Regarding results with message delays, the relative performance remains the same,
ABT being less efficient than ABT-hyb. In terms of msg, ABThyb outperforms ABT by
7.8%, 20.1% and 26.1% for sparse, medium and dense problem classes, respectively.
The benefits of adding synchronization points in ABT remains almost the same when
considering delays, even when obsolete ngd messages increase (Table 6).

5.3 Distributed Sensor-Mobile Problems

The Distributed Sensor-Mobile problem (SensorDCSP) is a distributed benchmark
based on a real distributed resource allocation problem [4]. It consists of n sensors
{s1, s2, ..., sn} that track m mobiles {v1, v2, ...vm}. Each mobile must be tracked by 3
sensors. Each sensor can track at most one mobile. A solution is an assignment of three
distinct sensors to each mobile which satisfies visibility and compatibility constraints.
The visibility constraint defines the set of mobiles that are visible to each sensor. The
compatibility constraint defines the compatibility relationship among sensors.

We encode SensorDCSP in DisCSP as follows. Each agent represents one mobile.
Every agent holds exactly one variable. The value domain of each variable is the set

Table 6. Number of messages of ABT and ABThyb for random DisCSP with message delays

d-ABT d-ABThyb

p1 ok? ngd adl obs ngd (%) ok? ngd adl obs ngd (%)
0.20 4,486 1,863 26 645 (34.6%) 4,244 1,605 26 344 (21.4%)
0.50 28,580 9,479 39 4,429 (46.7%) 23,690 6,716 38 2,280 (33.9%)
0.80 58,929 19,608 19 10,789 (55.0%) 45,251 12,811 19 5,451 (42.5%)
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Table 7. Number of non concurrent constraint checks and messages required by ABT and ABThyb

to solve instances of SensorDCSP, without (left) and with (right) message delays

ABT ABThyb d-ABT d-ABThyb

pv nccc msg nccc msg nccc msg nccc msg
0.20 33,632,099 2,454,366 7,051,764 714,208 32,848,331 2,647,790 7,277,239 799,644
0.50 1,346,669 181,020 1,172,975 144,574 1,306,229 197,149 1,184,653 154,238
0.80 40,744 12,013 31,264 8,961 37,296 13,966 29,919 9,538

Table 8. Number of messages of ABT and ABThyb solving SensorDCSP instances without delays

ABT ABThyb

pv ok? ngd obs ngd (%) ok? ngd obs ngd (%)
0.20 1,776,190 678,176 177,012 (26.1%) 550,678 163,530 30,692 (18.7%)
0.50 128,967 52,053 12,661 (24.3%) 104,734 39,840 4,610 (11.6%)
0.80 9,045 2,968 890 (29.9%) 6,899 2,062 366 (16.3%)

Table 9. Number of messages of ABT and ABThyb solving SensorDCSP instances with delays

d-ABT d-ABThyb

pv ok? ngd obs ngd (%) ok? ngd obs ngd (%)
0.20 1,861,347 786,443 278,883 (35.5%) 611,747 187,897 57,554 (30.6%)
0.50 137,601 59,548 19,396 (32.6%) 110,975 43,263 7,689 (17.7%)
0.80 10,136 3,829 1,692 (44.2%) 7,276 2,262 597 (26.3%)

all the possible combinations of three sensors that satisfies compatibility and visibility
constraints. There is a binary constraint between each pair of variables, which forbids
that several mobiles were tracked by the same sensor. SensorDCSP instances are gen-
erated according to four parameters: the number of sensors (n), the number of mobiles
(m), the probability that a mobile is visible for a sensor (pv), and the probability that
two sensors are compatible between them (pc).

We have evaluated ABT and ABThyb on SensorDCSP instances with 20 sensors, 5
mobiles, three values for pv (0.20, 0.5 and 0.8) and one value for pc (corresponding
to the most difficult instances). Table 7 presents results averaged over 250 executions
(50 instances × 5 random seeds). Again, ABThyb is always better than ABT in both
computation effort and communication cost. Similar results are also observed when
considering message delays. Obsolete ngd messages are always lower in ABThyb than
in ABT (see Tables 8 and 9).

6 Conclusions

We have presented ABThyb, a new hybrid algorithm for distributed CSP that combines
synchronous and asynchronous elements. This algorithm avoids that agents send some
redundant messages after backtracking. We have proved that the new algorithm is cor-
rect, complete and terminates. There are cases where ABT requires less messages than
ABThyb to solve an instance, but these cases seem to be infrequent in practice, ac-
cording with the reported experimental results on three benchmarks. For all considered
instances, ABThyb outperforms ABT in terms of the computation effort and communi-
cation cost. This improvement is due to the addition of synchronization points when
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backtracking, which makes ABThyb less robust than ABT to network failures. But for
applications where efficiency is the main concern, ABThyb seems to be a better can-
didate than ABT to solve DisCSP. Note that ABThyb benefits remain in presence of
message delays.
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Abstract. The efficiency of complete solvers depends both on constraint
propagation to narrow the domains and some form of complete search.
Whereas constraint propagators should achieve a good trade-off between
their complexity and the pruning that is obtained, search heuristics
take decisions based on information about the state of the problem be-
ing solved. In general, these two components are independent and are
indeed considered separately. A recent family of algorithms have been
proposed to achieve a strong form of consistency called Singleton Con-
sistency (SC). These algorithms perform a limited amount of search and
propagation (lookahead) to remove inconsistent values from the variables
domains, making SC costly to maintain. This paper follows from the ob-
servation that search states being explored while enforcing SC are an
important source of information about the future search space which is
being ignored. In this paper we discuss the integration of this look-ahead
information into variable and value selection heuristics, and show that
significant speedups are obtained in a number of standard benchmark
problems.

1 Introduction

Complete constraint programming solvers have their efficiency dependent on two
complementary components, propagation and search. Constraint propagation is
a key component in constraint solving, eliminating values from the domains of
the variables with polynomial (local) algorithms. The other component, search,
aims at finding solutions in the remaining search space, and is usually driven
by heuristics both for selecting the variable to enumerate and the value that is
chosen first.

Typically, these components are independent. In particular, heuristics take
into account some features of the remaining search space, and some structure of
the problem to take decisions. Clearly, the more information there is, the more
likely it is to get a good (informed) heuristics. Recently, a lot of attention has
been given to a class of algorithms which analyse look-ahead what-if scenarios:
what would happen if a variable x takes some value v? Such look-ahead analysis
(typically done by subsequently maintaining arc or generalised arc consistency
on the constraint network) may detect that value v is not part of any solution,
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and eliminate it from the domain of variable x. This is the purpose of the different
variants of Singleton Consistency (SC) [1,4,7,15].

In this paper we propose to go one step further of the above approaches. On
the one hand, by recognising that SC propagation is not very cost-effective in
general [17], we propose to restrict it to those variables more likely to be chosen
by the variable selection heuristics. More specifically, we assume that there are
often many variables that can be selected and for which no good criteria exists
to discriminate them. This is the case with the first-fail (FF) heuristics, where
often there are many variables with 2 values, all connected to the same number of
other variables (as is the case with complete graphs). Hence the information gain
obtained from SC propagation is used to break the ties between the pre-selected
variables.

On the other hand, we attempt to better exploit the information made avail-
able by the lookahead procedure, and use it not only to filter values but also to
guide search. The idea of exploiting look-ahead information is not new. How-
ever in the context of Constraint Programming, look-ahead information has not
been fully integrated in subsequent variable and value selection heuristics (see
section 5).

In this paper we thus investigate the possibility of integrating Singleton Con-
sistency propagation procedures with look-ahead heuristics, both for variable
and value selection heuristics, and analyse the speedups obtained in a number
of benchmark problems.

The structure of the paper is the following. In the next section we review some
properties of constraint networks. In section 3 we discuss variants of Singleton
Consistency, and show how to adapt them to obtain look-ahead information. In
section 4 we present a number of benchmark problems and compare the results
obtained when using and not using the look-ahead heuristics. In section 5 we
report on related work, and finally conclude with a summary of the lessons
learned and directions for further research.

2 Notation and Background

A constraint network consists of a set of variablesX , a set of domains D, and a set
of constraints C. Every variable x ∈ X has an associated domain D(x) denoting
its possible values. Every k-ary constraint c ∈ C is defined over a set of k variables
(x1, . . . , xk) by the subset of the Cartesian product D(x1)×. . .×D(xk) which are
consistent values. The constraint satisfaction problem (CSP) consists in finding
an assignment of values to variables such that all constraints are satisfied.

A CSP is arc-consistent iff it has non-empty domains and every consistent
instantiation of a variable can be extended to a consistent instantiation involving
an additional variable [16]. A problem is generalized arc-consistent (GAC) iff for
every value in each variable of a constraint there exist compatible values for all
the other variables in the constraint.

Enforcing (generalized) arc consistency is usually not enough for solving a
CSP and search must be performed. A large class of search heuristics follow
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Algorithm 1. sc(X ,C) : state

do
modified ←false
forall x ∈ X

modified ← sRevise(x,X ,C) ∨modified
if D(x) = ∅

state ←failed
return

endif
endfor

while modified =true
state ←succeed

the first-fail/best-promise policy (FF/BP) [12], which consists of selecting the
variable which more likely leads to a contradiction (FF), and then select the
value that has more chances of being part of a solution (BP). For estimating first-
failness, heuristics typically select the variable with smaller domain (dom), more
constraints attached (deg), more constraints to instantiated variables (bdeg), or
combinations (e.g. dom/deg). Best-promise is usually obtained by integrating
some knowledge about the structure of the problem.

3 Look-Ahead Pruning Algorithms

3.1 Singleton Consistencies

A CSP P is singleton θ-consistent (SC), iff it has non-empty domains and for any
value a ∈ dom (x) of every variable x ∈ X , the resulting subproblem P |x=a can
be made θ-consistent. Most cost-effective singleton consistencies are singleton
arc-consistency (SAC) [7] and singleton generalized arc-consistency (SGAC) [17].

To achieve SC in a CSP, procedure SC [7] instantiates each variable to each of
its possible values in order to prune those that (after some form of propagation)
lead to a domain wipe out (alg. 1).

Once some (inconsistent) value is removed, then there is a chance that a
value in a previously revised variable has become inconsistent, and therefore SC
must check these variables again. This can happen at most nd times, where n
is the number of variables, and d the size of the largest domain, hence SC time
complexity is in O(n2d2Θ), Θ being the time complexity of the algorithm that
achieves θ-consistency on the constraint network. Variants of this algorithm with
the same pruning power but yielding distinct space-time complexity trade-offs
have been proposed [1,3,4,15]. A related algorithm considers each variable only
once (alg. 2), has better runtime complexity O(ndΘ), but achieves a weaker
consistency, called restricted singleton consistency (RSC) [17].

Note that both algorithms use function sRevise (alg. 3) which prunes the
domain of a single variable by trying all of its possible instantiations.
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Algorithm 2. rsc(X ,C) : state

forall x ∈ X
sRevise(x,X ,C)
if D(x) = ∅

state ←failed
return

endif
endfor
state ←succeed

Algorithm 3. sRevise(x,X ,C) : modified

modified ←false
forall a ∈ D(x)

try x = a
state ←propagateθ(X ,C)

undo x = a
if state =failed

D(x) ← D(x) \ a
modified ←true

endif
endfor

3.2 Pruning Decisions

Another possible trade-off between run-time complexity and pruning power is
to enforce singleton consistency on a subset of variables S ⊂ X . We identified
two possible goals which condition the selection of S : filtering and decision
making. From a filtering perspective, S should be the smallest subset where
(restricted) singleton consistency can actually prune values, and although this
is not known a priori, approximations are possible by exploring incrementality
and value support [1,4]. On the other hand, S may be selected for improving
the decision making process, in particular of variable selection heuristics that
are based on the cardinality of the current domains. In this case, the pruning
resulting from enforcing singleton consistency is used as a mechanism to break
ties both in the selection of variable and in the choice of the value to enumerate.

Observing the general preference for variable heuristics which select smallest
domains first, we propose defining S as the set of variables whose domain car-
dinality is below a given threshold d. We denote by rscd(X , C) and scd(X , C),
respectively, the algorithms rsc(X|D|≤d, C) and sc(X|D|≤d, C), where X|D|≤d is
the subset of variables in X having domains with cardinality less or equal to d.

A further step in integrating singleton consistencies with search heuristics is
to explore information regarding the subproblems that are generated each time
a value is tested for consistency. We propose a class of look-ahead heuristics
(LA) for any CSP P which reason over the size of its solution space, given
by a function σ (P ), collected while enforcing singleton consistency. Although
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Algorithm 4. sReviseInfo(x,X ,C,info) : modified

modified ←false
forall a ∈ D(x)

try x = a
state ←propagateθ(X ,C)
info[x, a] ← collectInfo(X ,C)

undo x = a
if state =failed

D(x) ← D(x) \ a
modified ←true

endif
endfor

Algorithm 5. search(X ,C) : state

info ← ∅
if sc(X , C) =fail

state ←fail
return

endif
if ∀x : |D(x)| = 1

state ←succeed
return

endif
x ← selectVariable(X , info)
a ← selectValue(x, info)
state ← search(X , C ∪ (x = a)) or search(X ,C ∪ (x 	= a))

there is no known polynomial algorithm for computing σ (finding the number of
solutions of a CSP is a #P-complete problem), there exists a number of naive
as well as more sophisticated approximation functions [10,13]. We conjecture
that by estimating the size of the solution space for each possible instantiation,
i.e. σ (P |x=a), there is an opportunity for making more informed decisions that
will exhibit both better first-failness and best-promise behaviour. Moreover, the
class of approximations of σ presented below are easy to compute, do not add
complexity to the cost of generating the subproblems, and only requires a slight
modification of the sRevise algorithm.

The sReviseInfo algorithm (alg. 4) stores in a table (info) relevant infor-
mation to the specific subproblem being considered in each loop iteration. In
our case, info is an estimation of the subproblem solution space, more formally
info[x, a] = σ′ (P |x=a) where σ′ ≈ σ. The table is initialized before single-
ton consistency enforcement, computed after propagation, and handed to the
selectVariable and selectValue functions as shown in algorithm 5.

There are several possible definitions for these functions associated with how
they integrate the collected information. Regarding the selection of variable for
a given CSP P , we identified two FF heuristics which are cheap and easy to
compute:
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var1 (P ) = arg min
x∈X (P )

⎛
⎝ ∑

a∈D(x)

σ′ (P |x=a)

⎞
⎠

var2 (P ) = arg min
x∈X (P )

(
max

a∈D(x)
σ′ (P |x=a)

)
Informally, var1 gives preference for the variable with a smaller sum of the

number of solutions for every possible instantiation, while var2 selects the vari-
able whose instantiation with maximum number of solutions is the minimum
among all variables. For the selection of value for some variable x, a possible BP
heuristic is

val1 (P, x) = arg max
a∈D(x)

(σ′ (P |x=a))

which simply prefers the instantiation that prunes less solutions from the re-
maining search space.

Functions var1 and val1 correspond to the minimize promise variable heuristic
and maximize promise value heuristic defined in [9]. Please note that we do not
claim these are the best options for the estimation of the search space or the
number of solutions. We have simply adopted them for simplicity and for testing
the concept (more discussion on section 6).

4 Experimental Results

A theoretical analysis on the adequacy of these heuristics as FF or BP candidates
is needed, but hard to accomplish. Alternatively, in this section we attempt to
give some empirical evidence of the quality of these heuristics by presenting the
results of using them combined with constraint propagation and backtracking
search (BT) on a set of typical CSP benchmarks.

The set of heuristics selected for comparison was chosen in order to provide
some insight on the adequacy of enforcing SC on a subset of variables as a good
trade-off between propagation and search and on the impact of integrating LA
information in the variable and value selection heuristics. As a side effect, we
tried to confirm previous results on the classes of instances where SC is cost
effective and on the performance of RSC regarding SC.

As a first attempt at measuring the potential of LA heuristics, a simple mea-
sure was used for estimating the number of solutions in a given subproblem:

σ′ =
∑
x∈X

log2 (D(x))

which informally expresses that the number of solutions is correlated to the size
of the subproblem search space1. Although this is a very rough estimate, we
are assuming that it could nevertheless provide valuable information to compare
alternatives (see section 6).
1 We use the logarithm since the size of search space can be a very large number.
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As a baseline for comparison we used the dom variable selection heuristic (see
section 2) without any kind of singleton consistency enforcing. The other ele-
ments of the test set are the possible combinations of enforcing SC, RSC, SC2 or
RSC2 with the dom or LA heuristics. The SC2 and RSC2 tests implement the
scd(X , C) and rscd(X , C) strategies with d = 2, the threshold for which most
interesting results were obtained. The LA heuristics implement the proposed
functions var1 and val1. Each combination is thus denoted by a+b+c, where a
states the type of singleton consistency enforced (or is absent if none), b specifies
the variable heuristic and c the value heuristic. For example, sc+dom+min per-
forms singleton consistency and then instantiates the variable with the smallest
domain to the minimum value in its domain.

In the following experiments all times are given in seconds, and represent
the time needed for finding the first solution. The column ’ratio’, when present,
refers to the average CPU time of the current heuristic over the baseline, which
is always the CPU time of the dom heuristic. Data presented in the following
charts was interpolated using a B

Tests regarding sections 4.1 and 4.2 were performed on a Pentium4, 3.4GHz
with 1Gb RAM, while the results presented in section 4.3 were obtained on a
Pentium4, 1.7GHz with 512Mb RAM.

4.1 Graph Coloring

Graph coloring consists of trying to assign n colors to m nodes of a given graph
such that no pair of connected nodes have the same color. In this section we
evaluate the performance of the presented heuristics in two sets of 100 instances
of 10-colorable graphs, respectively with 50 and 55 nodes, generated using Joseph
Culberson’s k-colorable graph generator [6].

A CSP for solving the graph coloring problem was modelled by using variables
to represent each node and values to define its color. Difference binary constraints
were posted for every pair of connected nodes.

The average degree of a node in the graph d, i.e. the probability that each
node is connected to every other node, has been used for describing the phase
transition in graph coloring problems [5]. In this experiment we started by deter-
mining empirically the phase transition to be near d = 0.6, and then generated
100 random instances varying d uniformly in the range [0.5 . . .0.7].

Figure 1 compares the search effort using each heuristic on the smallest graph
problem, with a timeout of 300 seconds. These results clearly divide the heuris-
tics into two sets, the set where SC and RSC was used being much better than
the other on the hard instances. Since the ranking within the best set was not
so clear, a second experiment on the larger and more difficult problem was per-
formed using only these four heuristics, with a larger timeout of 900 seconds.
The results of these tests are shown graphically on fig. 2, and also given in detail
in table 1.

This second set of experiments shows that RSC+LA is better on the most
difficult instances (almost by an order of magnitude), while the others have
quite similar efficiency.

ézier smoothing curve.
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Fig. 1. CPU time spent in finding the first solution of random 10-colorable graph
instances with size 50

4.2 Random CSPs

Randomly generated CSPs have been widely used experimentally, for instance
to compare different solution algorithms. In this section we evaluate the look-
ahead heuristics on several random n-ary CSPs. These problems were generated
using model C [11] generalized to n-ary CSPs, that is, each instance is defined
by a 5-tuple 〈n, d, a, p1, p2〉, where n is the number of variables, d is the uniform
size of the domains, a is the uniform constraint arity, p1 is the density of the
constraint graph, and p2 the looseness of the constraints.

These tests evaluate the performance of the several heuristics in a set of ran-
dom instances near the phase transition. For this task we used the constrained-
ness measure κ [10] for the case where all constraints have the same looseness
and all domains have the same size:

κ =
− |C| log2 (p2)

n log2 d

where |C| is the number of n-ary constraints.
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Fig. 2. CPU time spent in finding the first solution of random 10-colorable graph
instances with size 55

Table 1. CPU time spent in finding the first solution of random 10-colorable graph
instances with size 55. Columns show averages for intervals of uniform variation of
constraint tightness d.

heuristic d

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700

rsc+dom+min 0.71 8.46 160.59 499.27 179.93 26.60 13.59 1.00

sc+dom+min 0.93 0.83 183.58 624.11 184.67 46.13 21.43 0.47

rsc+la 1.18 5.03 148.92 67.13 72.62 26.44 0.73 0.72

sc+la 0.46 104.29 320.35 603.55 107.27 69.51 0.36 0.37

We started by fixing n, d and a arbitrarily to 50, 5 and 3 respectively, and
then computed 100 values for p2 uniformly in the range [0.1 . . .0.8]. For each of
these values, a value of p1 was used such that κ = 0.95 (problems in the phase
transition have typically κ ≈ 1). The value of p1, given by

p1 = −κ
n log2 d

log2 p2
× a! (n − a)!

n!

is computed from the first formula and by noting that p1 is the fraction of
constraints over all possible constraints in the constraint graph, i.e.

p1 = |C| a! (n − a)!
n!

Solutions were stored as positive table constraints and GAC-Schema [2] was
used for filtering. The timeout was set to 600 seconds.
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Table 2. CPU time spent in finding the first solution of random CSP instances Columns
show averages for intervals of uniform variation of constraint looseness p2

p2

heuristic 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8

dom+min 0.06 0.34 2.98 12.86 52.84 236.82 377.18

rsc2+dom+min 0.10 0.58 4.69 18.79 73.61 279.86 429.22

rsc+dom+min 0.21 1.09 5.35 25.03 97.32 319.71 471.83

sc2+dom+min 0.11 0.64 4.95 20.45 79.78 289.59 438.92

sc+dom+min 0.27 1.28 6.27 29.28 112.15 341.82 492.76

rsc2+la 0.09 0.45 3.47 11.85 53.64 237.19 373.80

rsc+la 0.11 0.37 1.43 3.28 21.86 71.10 99.93
sc2+la 0.10 0.50 3.78 12.92 58.60 249.03 388.77

sc+la 0.15 0.47 1.75 4.04 26.06 82.60 115.13

Table 2 shows the results obtained. In figure 3 the performances of the most
interesting heuristics are presented graphically.

Besides the rsc+dom+min and sc+dom+min heuristics which always per-
formed worse than the others, there seems to be a change of ranking around
p2 ≈ 0.4, with the dom+min dominating on the dense instances, and LA heuris-
tics 3-4 times faster on the sparse zone. RSC+LA and SC+LA are consistently
close across all instances, being RSC slightly better.
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Fig. 3. CPU time spent in finding the first solution of random CSP instances

4.3 Partial Latin Squares

Latin squares is a well known benchmark which combines randomness and struc-
ture [19]. The problem consists in placing the elements 1 . . .N in a N ×N grid,
such that each element occurs exactly once on the same row or column. A partial
Latin squares (or quasigroup completion) problem is a Latin squares problem
with a number of preassigned cells, and the goal is to complete the puzzle.
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The problem was modelled using the direct encoding, i.e. using an all-different
(GAC) constraint for every row and column. The dual encoding model, as pro-
posed in [8], was also considered but never improved over the direct model on
the presented instances. The value selection heuristic used in conjunction with
the dom variable selection heuristic, denoted as mc (minimum-conflicts), selects
the value which occurs less in the same row and column of the variable to in-
stantiate. This is reported to be the best known value selection heuristic for this
problem [8].

We generated 200 instances of a satisfiable partial Latin squares of size 30,
with 312 cells preassigned, using lsencode-v1.1 [14], a widely used random quasi-
group completion problem generator. The timeout was set to 900 seconds.

Results are presented on table 3. In this problem there is a clear evidence of
the rsc2+la and sc2+la heuristics compared to every other. Besides the fact that
they are over 5 times faster than the other alternatives, they are also the most
robust, as shown by their lower standard deviations as well as the absence of
time out instances.

Table 3. Running times and number of fails for the pls-30-312 problem. Last column
shows the ratio between the average time of each heuristic over the average time of the
baseline, which is the dom+mc heuristic.

#fails time

heuristic #timeouts avg std avg std ratio

dom+mc 5 18658 43583 66.7 169 1

rsc2+dom+mc 5 235 436 70.2 156.4 1.05

rsc+dom+mc 5 24 49 89.3 159.2 1.34

sc2+dom+mc 10 174 330 100.5 207.1 1.51

sc+dom+mc 6 15 28 122.8 180.3 1.84

rsc2+la 0 51 127 12.2 19.9 0.18
rsc+la 0 14 35 67.7 47.7 1.02

sc2+la 0 43 109 15.6 26.4 0.23
sc+la 4 11 29 104.6 134.4 1.57

4.4 Discussion

The results obtained clarified some of the questions posed in the beginning of
this section. In particular, the best performing combinations in all problems
were always obtained using LA information, so this approach has clearly some
potential to be explored more thoroughly.

Regarding the use of SC on a subset of variables, the results so far are not
conclusive. Heuristics that restrict SC maintenance to only 2 valued variables
performed badly both on the graph coloring and random problems, but clearly
outperformed all others on the Latin squares problem. We think that this be-
haviour may be connected with the number of times these heuristics have a
chance to break ties both in the selection of variable and value. The cardinal-
ity of the domains should have impact on the number of decisions having the
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same preference for FF heuristics, in particular the dom heuristic. The average
number of values in the Latin squares problem is very low (around 3) since most
variables are instantiated, so these heuristics would have more chance to make a
difference here than on the other problems which have larger cardinality (5 and
10). The same argument may apply to the value selection heuristic if we note
that the selection of value is more important in problems with some structure,
which would again favour the Latin squares problem.

The remaining aspects of the results obtained are in accordance with the
extensive analysis of singleton consistencies described in [17]. On the question
of cost-effectiveness of RSC we obtained similar positive results, in fact it was
slightly better than SC on all instances. Its combination with LA was the most
successful, outperforming the others in the hard instances of every problem.

In the class of random problems, their work concludes that singleton con-
sistencies are only useful in the sparse instances. Our results also confirm this.
Generally, the claim that SC can be very expensive to maintain seems true in
our experiments except when using combined with LA heuristics. This provides
some evidence that the good behaviour of SC+LA observed relies more strongly
on correct decisions rather than on the filtering achieved.

5 Related Work

The work of [18] suggests improving the variable selection heuristic based on
the impact each variable assignment had on past search states. The impact is
defined as the ratio of search size reduction achieved when propagating the as-
signment. In their paper the use of a specific look-ahead procedure for measuring
this impact is regarded as costly, and depreciated in favour of a method that
accumulates this information across distinct search branches and/or search iter-
ations (restarts). Their results show that the method eventually converges to a
good variable ordering (the value selection heuristic is not considered).

In [13], belief updating techniques are used to estimate the likelihood of a
value belonging to some solution. These likelihoods are then used to improve the
value selection heuristic and as propagation: if it decreases to zero, the value is
discarded from the domain. However, the integration of this kind of propagation
with common local propagation algorithms is not explored in that paper.

6 Conclusion

In this paper we presented an approach that incorporates look ahead informa-
tion for directing backtracking search, and suggested that this could be largely
done at no extra cost by taking advantage of the work already performed by
singleton consistency enforcing algorithms. We described how such a framework
could extend existing SC and RSC algorithms by requiring only minimal modi-
fications. Additionally, a less expensive form of SC was revisited, and a new one
proposed which involves revising only a subset of variables. Empirical tests with
two common benchmarks and with randomly generated CSPs showed promising
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results on instances near the phase transition. Finally, results were analysed and
matched against those previously obtained by other researchers.

There are a number of open questions and future work directions. As dis-
cussed in the previous section, tests which use singleton consistency on a subset
of variables defined by its cardinality were not consistently better or worse than
the others, but may be very beneficial sometimes. We think this deserves more
investigation, namely testing with more structured problems, using a distinct
selection criteria (other than domain cardinality), and selective performing sin-
gleton consistency less often by reusing previously computed information (in the
info table).

The most promising direction for future work is improving the FF and BP
measures. Look-ahead heuristics presented above use rather naive estimation of
number of solutions for a given subproblem compared to, for example, the κ
measure introduced in [10], or the probabilistic inference methods described in
[13]. The κ measure, for example, takes into account the individual tightness of
each constraint and the global density of the constraint graph. Their work shows
strong evidence for best performance of this measure compared with standard
FF heuristics, but also point out that the complexity of its computation may
lead to suboptimal results in general CSP solving (the results reported are when
using forward-checking). Given that we perform a stronger form of propagation
and have look-ahead information available, the cost for computing κ may be
worth while. We intend to investigate this in the future.

Other improvements include the use of faster singleton consistency enforcing
algorithms [1,4], which should be orthogonal to the results presented here, and
the use of constructive disjunction during the maintenance of SC, by pruning
values from the domains of a variable that does not appear in the state of the
problem for all values of another variable.

We think the results obtained so far are quite promising and justify further
research along the outlined directions.
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Abstract. Graph pattern matching is a central application in many fields. In var-
ious areas, the structure of the pattern can only be approximated and exact match-
ing is then too accurate. We focus here on approximations declared by the user
within the pattern (optional nodes and forbidden arcs), covering graph/subgraph
mono/isomorphism problems. In this paper, we show how the integration of two
domains of computation over countable structures, graphs and maps, can be used
for modeling and solving various graph matching problems from the simple graph
isomorphism to approximate graph matching. To achieve this, we extend map
variables allowing the domain and range to be non-fixed and constrained. We
describe how such extended maps are designed then realized on top of finite do-
main and finite set variables with specific propagators. We show how a single
monomorphism constraint is sufficient to model and solve those multiples graph
matching problems. Furthermore, our experimental results show that our CP ap-
proach is competitive with a state of the art algorithm for subgraph isomorphism.

1 Introduction

Graph pattern matching is a central application in many fields [1]. Many different types
of algorithms have been proposed, ranging from general methods to specific algorithms
for particular types of graphs. In constraint programming, several authors [2,3] have
shown that graph matching can be formulated as a CSP problem, and argued that con-
straint programming could be a powerful tool to handle its combinatorial complexity.

In many areas, the structure of the pattern can only be approximated and exact match-
ing is then far too stringent. Approximate matching is a possible solution, and can be
handled in several ways. In a first approach, the matching algorithm may allow part
of the pattern to mismatch the target graph (e.g. [4,5,6]). The matching problem can
then be stated in a probabilistic framework (see, e.g. [7]). In a second approach, the
approximations are declared by the user within the pattern, stating which part could be
discarded (see, e.g. [8,9]). This approach is especially useful in fields, such as bioinfor-
matics, where one faces a mixture of precise and imprecise knowledge of the pattern
structures. In this approach, which will be followed in this paper, the user is able to
choose parts of the pattern open to approximation.

Within the CSP framework, a model for graph isomorphism has been proposed by
Sorlin et al. [10], and by Rudolf [3] and Valiente et al. [2] for graph monomorphism.

F. Fages, F. Rossi, and S. Soliman (Eds.): CSCLP 2007, LNAI 5129, pp. 76–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Subgraph isomorphism in the context of the SBDD method for symmetry breaking is
shortly described in [11]. We also proposed in [9] a CSP model for approximate graph
matching, but without graph and map variables. Our propagators for monomorphism
are based on these works. A declarative view of matching has also been proposed in
[12] in the context of XML queries.

In constraint programming, two domains of computation over countable structures
have received recent attention : graphs and maps. In CP(Graph) [13], graph variables,
and constraints on these variables are described (see also [14,15] for similar ideas).
CP(Graph) can be used to express and solve combinatorial graph problems modeled as
constrained subgraph extraction problems. In [16,17], function variables are proposed,
but the domain and range are limited to ground sets. Such function variables are useful
for modeling problems such as warehouse location.

In this paper, we propose an extension to function variables by generalizing them
to non-fixed range and domain (source and target set). We call this extension CP(Map)
and show how approximate graph matching can be modeled and solved, within the CSP
framework, on top of CP(Graph+Map).

Contributions. The main contributions of this work are the following:

– Extension of function variables, where the domain and range of the mapping are not
limited to ground sets, but can be finite set variables. Introduction of the MapVar
and Map constraints which allow to use the non-fixed feature of our map variables.

– Demonstration of how a single constraint is able to express a wide range of graph
matching problems thanks to three high-level structured variables. In particular, we
show how switching a parameter from a fixed graph to a graph interval opens a
new spectrum of matching problems. We show how additional constraints imposed
on this graph interval enable the expression of hybrid problems such as approxi-
mate graph matching. The beauty and originality of this approach resides in that
those problems are either new or were always treated separately, illustrating the
expressive power and generality of constraint programming.

– Experimental evaluation of our CP approach. We show that this modeling exercise
is not only aesthetic but is actually competitive with the current state of the art in
subgraph isomorphism (vflib). The genericity of the approach does not hinder the
efficiency of the solver. On a standard benchmark set, we show that our approach
solves in a given time limit a fourth of the instances which cannot be solved by
vflib while only spending between 9% and 22% more time on instances solved by
the two competing approaches.

The next section describes the basic idea behind the CP(Graph) framework. CP(Map),
our extension to function variables in CP is described in Section 3. Approximate graph
matching is defined in Section 4, and its modeling within CP(Graph+Map) is handled in
Section 5. Section 6 analyses experimental results, and Section 7 concludes this paper.

2 CP(Graph)

Graphs have been around since the first years of constraint programming. Some prob-
lems involving undetermined graphs have been formulated using either binary variables,
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sets ([14,15]) or integers (successor variables e.g. in [18,19]). CP(Graph) [13] unifies
those models by recognizing a common structure: Graph variables are variables whose
domain ranges over a set of graphs and as with set variables [20,16], this set of graphs
is represented by a graph interval [D(G), D(G)] where D(G), the greatest lower bound
(glb) and D(G), the least upper bound (lub) are two graphs with D(G) a subgraph of
D(G) (we write D(G) ⊆ D(G)). These two bounds are referred to as the lower and
the upper bound. The lower bound D(G) is the set of all nodes and arcs which must be
part of the graph in a solution while the upper bound D(G) is the set of all nodes and
arcs which could be part of the graph in some solution. The domain of a graph variable
with D(G) = [D(G), D(G)] is the set of graphs g with D(G) ⊆ g ⊆ D(G). Here, g is
used to denote a constant graph and G is used to denote a graph variable. This notation
is used throughout this paper: in CSP, lowercase letters denote constants and uppercase
letters denote domain variables.

Graph variables can be implemented using a dedicated data-structure or translated
into set variables, integer variables or binary variables. For instance, a graph variable G
can be modeled as a set of nodes N and a set of arcs E with an additional constraint
enforcing the relation E ⊆ N × N . Whatever the graph variable implementation, two
basic constraints Nodes(G, SN) and Arcs(G, SA) allow to access respectively the set
of nodes and the set of arcs of the graph variable. To simplify the notation the expression
Nodes(G) is used to represent a set variable constrained to be equal to the set of nodes
of G. A similar notation is used for arcs.

Various constraints have been defined over such graph variables (or their preceding
specialized models); see for instance the cycle [18], tree [21], path [22,23], minimum
spanning tree [24] or spanning tree optimization constraint [25]. In the remainder of this
article, we only use the two simple constraints Subgraph(G1, G2) (also denoted G1 ⊆
G2) and InducedSubgraph(G1, G2) (also denoted G1 ⊆∗ G2). G1 ⊆ G2 holds if
G1 is a subgraph of G2, its propagator enforces that the lower and upper bounds of G1

are subgraphs of the lower bound and upper bounds of G2 respectively. The constraint
G1 ⊆∗ G2 states that G1 is the node-induced subgraph of G2. It holds if G1 is a subgraph
of G2 such that for each arc a of G2 whose end-nodes are in G1, a is also in G1.

3 CP(Map)

The value of a map variable is a mapping from a domain set to a range set. The domain
of a map variable is thus a set of mappings. Map variables were first introduced in CP
in [16] where Gervet defines relation variables. However, the domain and the range of
the relations were limited to ground finite sets. Map variables were also introduced as
high level type constructors, simplifying the modeling of combinatorial optimization
problems. This was first defined in [17] as a relation or map variable M from set v
into a set w, where supersets of v and w must be known. Such map variables are then
compiled into OPL. This idea is developed in [26], but the domain and range of a map
variable are limited to ground sets. Relation and map variables are also described in
[27] as a useful abstraction in constraint modeling. Rules are proposed for refining
constraints on these complex variables into constraints on finite domain and finite set
variables. Map variables were also introduced in modeling languages such as ALICE
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[28], REFINE [29] and NP-SPEC [30]. To the best of our knowledge, map variables
were not yet introduced directly in a CP language. One challenge is then to extend
current CP languages to allow map variables as well as constraints on these variables.

In the remaining of this section, we show how a CP(Map) extension can be realized
on top of finite domain and finite set variables.

3.1 The Map Domain

We consider the domain of total surjective functions. Given two elements m1 : s1 → t1
and m2 : s2 → t2, where s1, s2, t1, t2 are sets, we have m1 ⊆ m2 iff s1 ⊆ s2 ∧ t1 ⊆
t2 ∧ ∀x ∈ s1 : m1(x) = m2(x). We also have that m = glb(m1, m2) is a map
m : s → t with s = {x ∈ s1 ∩ s2 | m1(x) = m2(x)}, t = {v | ∃x ∈ s : m1(x) = v},
and ∀x ∈ s : m(x) = m1(x) = m2(x). The lub between two elements m1, m2 exists
only if ∀x ∈ s1 ∩ s2 : m1(x) = m2(x). In that case the lub is a map m : s → t
with m(x) = m1(x) if x ∈ s1, and m(x) = m2(x) if x ∈ s2, s = s1 ∪ s2, and
t = {v | ∃x ∈ s : m(x) = v}. The domain of total surjective functions is then a meet
semi lattice, that is a semi lattice where every pairs of elements has a glb.

3.2 Map Variables and the MapVar Constraint

A map variable is declared with the constraint MapVar (M, S, T ), where M is the map
variable and S, T are finite set variables of Cardinal [31]. The domain of M is all the
total surjective functions from s to t, where s, t are in the domain of S, T . We call S the
source set of M , and T the target set of M . When M is instantiated (when its domain
is a singleton), the source set and the target set of M are ground sets corresponding to
the domain and the range of the mapping. As usual, the domain of a set variable S is
represented by a set interval [D(S), D(S)], the set of sets s with D(S) ⊆ s ⊆ D(S).

Example Let M be a map variable declared in MapVar (M, S, T ), with dom(S) =
[{8}, {4, 6, 8}] and dom(T ) = [{}, {1, 2, 4}]. A possible instance of M is {4 → 1, 8 →
4}. On this instance, S = {4, 8}, and T = {1, 4}. Another instance is M = {4 →
1, 8 → 1}, S = {4, 8}, and T = {1}.

Map variables can be used for defining various kinds of mappings, such as :

– Surjective function : SurjectFct(M, S, T ) ≡ MapVar (M, S, T ).
– Bijective function : BijectFct(M, S, T ) ≡ SurjectFct(M, S, T )
∧∀i, j ∈ S : i �= j ⇒ M(i) �= M(j).

– Injective function : InjectFct(M, S, T ) ≡ T ′ ⊆ T ∧ BijectFct(M, S, T ′)
– Total function : TotalFct(M, S, T ) ≡ T ′ ⊆ T ∧ SurjectFct(M, S, T ′)
– Partial function : PartialFct(M, S, T ) ≡ S′ ⊆ S ∧ TotalFct(M, S′, T )

In order to access individual elements of the map, we define the constraint
Map(M, X, V ), where X and V are finite domain variables. Given a map variable de-
clared with MapVar (M, S, T ), the constraint Map(M, X, V ) holds when X ∈ S∧V ∈
T ∧ M(X) = V . We also define the constraint M1 ⊆ M2.

3.3 Implementing Map Variables in a Finite Domain Solver

When a map variable M is declared by MapVar (M, S, T ), a finite domain (FD) vari-
able Mx is associated to each element x of the upper bound of the source set (D(S)).
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The semantics of these FD variables is simple : Mx represents M(x), the image of x
through the function M . Since the source set S can be non-fixed, x might eventually not
be in S and its image would not be defined. A special value ⊥ is used for this purpose.
The relationship between the domain of each variable Mx and the set variables S and
T can be stated as follows :

– (1) S = {x | Mx �=⊥} (M is total)
– (2) T = {v | ∃x : Mx = v �=⊥} (M is surjective)

Given MapVar (M, S, T ), the domain of M is the set of total surjective functions
m : s → t with s ∈ D(S), t ∈ D(T ), ∀x ∈ s : m(x) ∈ D(Mx), and ∀x �∈ s :⊥∈
D(Mx).

As can be seen on Figure 1, these variables are stored in an array and accessed
by value x through a dictionary data structure (e.g. hashmap) index used to store the
index in the array of each value of D(S). The initial domain of each FD variable is
D(T ) ∪ {⊥}.

3.4 Additional Constraints and Propagators

Given two map constraints MapVar (M1, S1, T 1) and MapVar (M2, S2, T 2) the con-
straint M1 ⊆ M2 is implemented as S1 ⊆ S2 ∧ T 1 ⊆ T 2 ∧ ∀x ∈ S1 : M1x = M2x.
The last conjunct can be implemented as a set of propagation rules :

– x ∈ D(S1) → M1x = M2x

– for each x ∈ D(S1) \ D(S1) : M1x �= M2x → x /∈ S1.

The constraint Map(M, X, V ) is translated to Element(index(X), I, V ) ∧ X ∈ S
∧ V ∈ T , where S and T are the source and target sets of M , I is the array representing
the FD variables Mx, and index(X) is a finite domain obtained by taking the index of
each value of the domain of X using the index dictionary.

The implementation of BijectFct(M, S, T ) is realized through MapVar (M, S, T )
∧ AllDiffExceptV al(I,⊥) ∧ |S| = |T |, where I is the array representing the FD
variables Mx, and AllDiffExceptV al holds when all the FD variables in I are differ-
ent when their value is not ⊥ [32].

Given MapVar (M, S, T ), the propagation between M , S and T is based on their
relationship described in the previous section, and is achieved by maintaining the fol-
lowing invariants :

8

4

6
32

index
1

4 6 8

dom(S)=[{8},{4,8}]

dom(T)=[{},{1,2,4}]

dom(M )={    }

dom(M )={1,2,    }

dom(M )={1,4}

{1,4}{    }{1,2,   }

Fig. 1. Implementation of MapVar(M, S, T ) (with initial domain dom(S) = [{8}, {4, 6, 8}]
and dom(T ) = [{}, {1, 2, 4}]), assuming (other) constraints already achieved some pruning
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– D(S) = {x | D(Mx) �= {⊥}}
– D(S) =

{
x ∈ D(S) |⊥/∈ D(Mx)

}
– D(T ) = {v | v �=⊥ ∧ ∃x : v ∈ D(Mx)}
– D(T ) ⊇ {v | v �=⊥ ∧ ∃x : D(Mx) = {v}}

The last invariant is not an equality because when a value is known to be in T , it is not
always possible to decide which element in I should be assigned to v.

Propagations rules are then easily derived from these invariants (two rules per invari-
ant) :

Mx = ⊥ → x /∈ D(S)

x /∈ D(S) → Mx = ⊥
x ∈ D(S) → Mx �= ⊥
Mx �= ⊥ → x ∈ D(S)

v /∈ D(T ) ∧ v �= ⊥ → v /∈ D(Mx)

NbOccur(I, v) = 0 ∧ v �= ⊥ → v /∈ D(T )
Mx = v �= ⊥ → v ∈ D(T )

v ∈ D(T ) ∧ NbOccur(I, v) = 1 ∧ v ∈ D(Mx) → Mx = v

where NbOccur(I, v) denotes the number of occurrences of v in the domains of the
FD variables in I . Each of these propagation rules can be implemented in O(1) (assum-
ing a bit representation of sets). The implementation of propagators also exploits the
cardinality information associated with set variables.

3.5 A Global Constraint Based on Matching Theory

The above propagators do not prune the Mx FD variables (except the ⊥ value). We
show here how flow and matching theory can be used to design a complete filtering
algorithm for the MapVar (M, S, T ) constraint. The algorithm is similar to that of the
GCC and Alldiff constraints but is based on a slightly different notion: the V -matchings
(see [33]). In the remainder of this section we show that V -matchings characterize the
structure of the MapVar constraint. Note that it also has similarities with the Nvalue,
Range and Roots constraints ([34,35]).

Definition 1. The variable-value graph of a MapVar (M, S, T ) constraint is a bipartite
graph where the two classes of nodes are the elements of D(S) on one side and the
elements of D(T ) plus ⊥ on the other side. An arc (x, v) is part of the graph iff v ∈
D(Mx).

Definition 2. In a bipartite graph g = (N1 ∪ N2, A), a matching M is a subset of
the arcs such that no two arcs share an endpoint : ∀(u1, v1) �= (u2, v2) ∈ M : u1 �=
u2 ∧ v1 �= v2. A matching M covers a set of nodes V , or M is a V -matching of g iff
∀x ∈ V : ∃(u, v) ∈ M : u = x ∨ v = x

The following property states the relationship between matching in the bipartite graphs
and solutions of the MapVar constraint.
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Property 1. Given the constraint MapVar (M, S, T ) and its associated variable-value
graph g, assuming the constraint is consistent, we have :

– (1) Any solution m : s → t contains a t-matching of g, and any t-matching can be
extended to a solution.

– (2) An arc (x, v) belongs to a D(T )-matching of g, iff there exists a solution m
with m(x) = v

Proof. (1) The solution m is surjective; every node of t must have at least one incident
arc. If we choose one incident arc per node in t, we have a t-matching as m is a function.

Given a t matching, let m : s → t be the bijective function corresponding to this
matching. Adding arcs to t leads to a surjective function. Let s′ = D(S) ∪ s, and
t′ = D(T ) ∪ t. Since the constraint is consistent, ∀x ∈ s′ \ s ∃(x, v) ∈ g : v �=⊥, and
∀v ∈ t′ \ t ∃(x, v) ∈ g. Adding all these arcs leads to a surjective function which is a
solution.

(2) (⇒) This is a special case of the second part of (1).
(⇐)Let m : s → t be a solution with m(x) = v. We then have (x, v) ∈ g. By (1),

the graph g contains a t-matching M which is also a D(T )-matching as D(T ) ⊆ t.
If (x, v) ∈ M we are done. Assume (x, v) /∈ M . Then x is free with respect to M
because M(x) = v. As v ∈ t, v is covered by M; there is a variable node w such that
(w, v) ∈ M . Then, x, v, w is an even alternating path starting in a free node. Replacing
(w, v) by (x, v) leads to another t-matching, hence a D(T )-matching of g. �

From Property 1, an arc-consistency filtering algorithm can be derived : compute the
set A of arcs belonging to some D(T )-matching of the bipartite graph; if (x, v) /∈ A,
remove v from D(Mx). The computation of this set can be done using techniques such
as described in [33], with a complexity of O(mn), where n is the size of T , and m is
the number of arcs in the variable-value graph.

4 Approximate Graph Matching and Other Matching Problems

In this section, we define different matching problems ranging from graph homomor-
phism to approximate subgraph matching. The following definitions apply for directed
as well as undirected graphs.

A graph homomorphism between a pattern graph P = (Np, Ap) and a target
graph G = (N, A) is a total function f : Np → N respecting the morphism con-
straint (u, v) ∈ Ap ⇒ (f(u), f(v)) ∈ A. The graph P is homomorphic to G through
the function f . In a graph monomorphism, the function f must be injective. In a
graph isomorphism the function f must be bijective, and the condition (u, v) ∈ Ap ⇒
(f(u), f(v)) ∈ A is replaced by (u, v) ∈ Ap ⇔ (f(u), f(v)) ∈ A. Subgraph isomor-
phisms is defined over an induced subgraph of the target graph. Notice that subgraph
homo/mono-morphism are meaningless as graph homo/mono-morphism already maps
Np to a subset of N . All these problems, except graph isomorphism are NP-complete.

A useful extension is approximate subgraph matching, where the pattern graph and
the found subgraph in the target graph may differ with respect to their structure [9]. We
choose an approach where the approximations are declared by the user in the pattern
graph through optional nodes and forbidden arcs.
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In the previous graph matching problems, all the nodes of the pattern must be
matched. An interesting extension consists in allowing optional nodes in the pattern
graph. Those nodes need not necessarily be matched. If they are, all arcs incident to
them are considered part of the pattern and the matching constraints apply to them. In
other words, the pattern that is used in the morphism problem is an induced subgraph
of the pattern containing optional nodes.

In graph isomorphism, if two nodes in the pattern are not related by an arc, this ab-
sence of arc is an implicit forbidden arc in the matching. It would be interesting to de-
clare explicitly which arcs are forbidden, leading to problems between monomorphism
and isomorphism.

In Figure 2, mandatory nodes are represented as filled nodes, and optional nodes
are represented as empty nodes. Mandatory arcs are represented with plain line, and
arcs incident to optional nodes are represented with dashed lines. Forbidden arcs are
represented with a plain line crossed.

In that figure, node 6 cannot be matched to node f because only one of the arcs
(6, 4) and (6, 5) in the pattern can be matched in the target. The right side of the figure
presents two solutions of the matching problem. The nodes and arcs not matched in the
target graph are greyed.

A pattern graph with optional nodes and forbidden arcs forms an approximate pattern
graph, and the corresponding matching is called an approximate subgraph matching[9].
We focus here on approximate graph monomorphism.

Definition 1. An approximate pattern graph is a tuple (Np, Op, Ap, Fp) where
(Np, Ap) is a graph, Op ⊆ Np is the set of optional nodes and Fp ⊆ Np × Np is
the set of forbidden arcs, with Ap ∩ Fp = ∅.

Definition 2. An approximate subgraph matching between an approximate pattern
graph P = (Np, Op, Ap, Fp) and a target graph G = (N, A) is a partial function
f : Np → N such that:

1. Np \ Op ⊆ dom(f)
2. ∀ i, j ∈ dom(f) : i �= j ⇒ f(i) �= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ap ⇒ (f(i), f(j)) ∈ A
4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ A

The notation dom(f) represents the domain of f . Elements of dom(f) are called the
selected nodes of the matching. According to this definition, if Fp = ∅ the matching is a
subgraph monomorphism, and if Fp = Np ×Np \Ap, the matching is an isomorphism.

Fig. 2. Example of approximate matching
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5 Modeling Graph Matching and Related Problems

In this section, we show how CP(Graph+Map) can be used for modeling and solving a
wide range of graph matching problems.

The problems of graph matching can be stated along three different dimensions:

– homomorphism versus monomorphism versus isomorphism;
– graph versus subgraph matching;
– exact versus approximate matching

These different problems illustrated in Table 1. All these problems can be modeled and
solved through a morphism constraint on a map variable and two graph variables.

5.1 The Basic Morphism Constraints

The two important morphism constraints introduced in this paper are the
SurjMC (P, G, M) and BijMC (P, G, M) constraints, which holds when M is a to-
tal surjective / bijective mapping from P to G respecting the morphism constraint.

SurjMC (P, G, M) ≡ SurjectFct(M,Nodes(P ),Nodes(G)) ∧ MC(P, G, M)
BijMC (P, G, M) ≡ BijectFct(M,Nodes(P ),Nodes(G)) ∧ MC(P, G, M)

with MC(P, G, M) ≡ ∀(i, j) ∈ Arcs(P ) : (M(i), M(j)) ∈ Arcs(G)

We now show how these two morphism constraints can be used to solve the different
classes of problems.

5.2 Exact Matching

Let p be a pattern graph and g be a target graph. The graphs p and g are ground objects
in CP(Graph+Map). Graph homo and monomorphism can easily be modeled as shown
in Table 1. Homomorphim (resp. monomorphism) requires a surjective (resp. bijective)
function between p and a subgraph of g, respecting the morphism constraint. We use here
a graph variable instead of a graph constant for the target graph (G with D(G) = [∅, g]).

Graph isomorphism requires a bijective function between p and g respecting two
morphism constraints : one between the graphs, and a second between the comple-
mentary graphs. This requires a complementary graph constraint CompGraph(G, Gc)
which holds if Nodes(G) = Nodes(Gc) = N and Arcs(Gc) = (N × N) \ Arcs(G).
For conciseness, we also use the functional notation Comp(G) = Gc. In the subgraph
isomorphism problem, there should exist a isomorphism between p and an induced sub-
graph of g.

5.3 Optional Nodes and Forbidden Arcs

To cope with the optional nodes in the pattern graph, we replace the fixed graph pattern
by a constrained graph variable, as illustrated in Table 1. Let p be the pattern graph
with optional nodes, and pman be the subgraph of p induced by the mandatory nodes of
p. Graph monomorphisms with optional nodes amounts to find an intermediate graph
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Table 1. Constraints for the matching problems

Exact matching
homomorphism G ⊆ g ∧ SurjMC (p,G, M)
monomorphism G ⊆ g ∧ BijMC (p, G, M)
isomorphism BijMC (p, g,M) ∧ BijMC (Comp(p),Comp(g),M)
subgraph isomorph. G ⊆∗ g ∧ BijMC (p,G, M) ∧ BijMC (Comp(p),Comp(G), M)
Optional nodes
homomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ G ⊆ g ∧ SurjMC (P, g,M)
monomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ G ⊆ g ∧ BijMC (P, g,M)
isomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P, g, M)

∧BijMC (Comp(P ),Comp(G), M)
subgraph isomorph. G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P, G, M)

∧BijMC (Comp(P ),Comp(g), M)
Forbidden arcs
monomorphism G ⊆∗ g ∧ BijMC (p,G, M) ∧ BijMC (pforb,Comp(G), M)

between pman and p which is monomorphic to the target graph. However, between
pman and p, only the subgraphs induced by p should be considered. When two optional
nodes are selected in the matching, if there is an arc between these nodes in pattern
graph p, this arc must be considered in the matching, according to our definition of
optional nodes, this is done through the use of the induced subgraph relation (⊆∗).

When all the nodes of the pattern graph are optional in the graph monomorphism,
we have the maximum common subgraph problem by adding the size of P as an objec-
tive function. Similarly for subgraph isomorphism, this leads to the maximum common
induced subgraph problem.

Allowing the specification of a set of forbidden arcs amounts to a simple
generalization of the isomorphism problem, lying between monomorphism and iso-
morphism. As in the model for isomorphism, forbidden arcs are handled through a
morphism constraint on the complement of the target graph. This time, only a spec-
ified set pforb of arcs are forbidden. Isomorphism constitutes a special case where
pforb = Arcs(Comp(p)). This illustrated for the monomorphism problem in Table 1

The problem of approximate subgraph matching as defined in section 5, simply com-
bines the use of optional nodes and forbidden arcs. Given an approximate pattern graph
(Np, Op, Ap, Fp) where (Np, Ap) is a graph, Op ⊆ Np is the set of optional nodes, and
Fp ⊆ Np × Np is the set of forbidden arcs, and a target graph (N, A), we define the
following CP(Graph+Map) constants :

– p: the pattern graph (Np, Ap),
– pman: the subgraph of p induced by the mandatory nodes Np \ Op of p,
– g: the target graph (N, A),
– pforb : the graph (Np, Fp) of the forbidden arcs.

The modeling of approximate matching is then a combination of graph monomor-
phism with optional nodes, and forbidden arcs.

G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P, G, M)
∧ Nodes(Pc) = Nodes(P ) ∧ Pc ⊆∗ pforb ∧ BijMC (Pc,Comp(G), M)
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5.4 Global Constraints

The main difference between the SurjMC (P, G, M) and BijMC (P, G, M) constraints
is an alldiff constraint ensuring the bijective property of the mapping M . A direct im-
plementation of these constraints based on their definition would be very inefficient. A
global constraint for

MC(P, G, M) ≡ ∀(i, j) ∈ Arcs(P ) : (M(i), M(j)) ∈ Arcs(G)

has been designed based on [2,9], and generalized in the context of graph intervals and
our extension to function variables. This global constraint is algorithmically global as
it achieves the same consistency as the original conjunction of constraints, but more
efficiently [36].

Redundant constraint, such as proposed in [2,9] have also been developed to enhance
the pruning. We also specialized global constraints for the different matching families.
For instance, a global constraint for filtering subgraph isomorphism was developed and
was used to solve difficult instances in [37]. Regarding the approximate matching with
optional nodes, the Mono propagator is specialized and assumes that a P ⊆∗ p con-
straint is posted too, allowing a more efficient pruning. For the isomorphism and for ap-
proximate matching with forbidden arcs, a single propagator combining the two Mono
propagator is also used, following the ideas developed in [9].

6 Experimental Results

This section assesses the performance of the proposed CP(Graph+Map) framework for
graph matching. We compare our proposed solution with vflib [38,39], the current
state of the art algorithm for subgraph isomorphism, improving over Ullman’s algorithm
[40].

The CP(Graph+Map) framework has been implemented over the Gecode system
(http://www.gecode.org), including graph variables and propagators, map vari-
ables and propagators, together with matching propagators.

Our benchmark set consists of graphs made of different topological structures as
explained in [2]. These graphs were generated using the Stanford GraphBase [41], con-
sisting of 1225 undirected instances, and 405 directed instances. The graphs range from
10 to 125 nodes for undirected graphs, and from 10 to 462 for directed graphs.

The experiments consist in performing subgraph monomorphism over the 1225 undi-
rected instances, and subgraph isomorphism over the 405 instances. All solutions are
searched. Following the methodology used in [2], we ran the two competing algorithms
for five minutes on each of the problem instances. A run is called solved if it finishes
under five minutes or unsolved otherwise. All benchmarks were performed on an Intel
Xeon 3 Ghz.

Table 6 shows the experimental results. We report the percentage of solved instances
(sol.), the percentage of unsolved instances (unsol), the total running time (tot.T), the
mean running time (av.T) and memory (av.M) and the mean running time and memory
over instances solved by both approaches (resp. “av.T com.” and “av.M com.”).

The CP(Graph+Map) model solves more problem instances than the specialized
vflib algorithm. This difference is significant for subgraph monomorphism (61% vs.
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Table 2. Comparison of the two methods on monomorphism and isomorphism problems

All solutions; subgraph monomorphism over undirected graphs (5 min. limit)
solved unsolved tot.T av.T av.M av.T com. av.M com.

min sec kb sec kb
vflib 48% 51% 3273 160 11.91 4.96 97.6

CP(Graph+Map) 61% 38% 2479 121 9115.46 5.43 8243

All solutions; subgraph isomorphism over directed graphs (5 min. limit)
solved unsolved tot.T av.T av.M av.T com. av.M com.

min sec kb sec kb
vflib 92% 7% 181 26.95 114.28 4.11 4.22

CP(Graph+Map) 96% 3% 109 16.22 2859.85 5.04 2754

48%). It is interesting to notice that around 4% of the instances solved by vflib were
not solved by our CP model. This shows that on some instances, standard algorithms can
be better, but that globally, CP(Graph+Map) solves more instances. It is clear that the
CP approach consumes more memory. The comparison of the average time is clearly in
favour of CP(Graph+Map) as it solves more instances. It is more interesting to compare
the mean execution time on the commonly solved instances. This shows that the time
overhead induced by the CP approach is minimal on the commonly solved instances :
about 9% for monomorphism over undirected graphs and 22% for isomorphism over
directed graphs.

We conclude that our approach is beneficial to someone willing to pay an average
time overhead of 9% to 22% on “simple” instances to be able to solve a fourth of
the instances of the benchmark which cannot be solved in the time limit by the other
method.

7 Conclusion

In this paper, we showed how the integration of two domains of computation over count-
able structures, graphs[13]. and maps, [16], can be used for modeling and solving a
wide spectrum of of graph matching problems with any combination of the follow-
ing properties : monomorphism or isomorphism, graph or subgraph matching, exact or
approximate matching (user-specified approximation [9]). To achieve this, we needed
to generalize the map variables with non-fixed source and target sets (of the Cardinal
kind [31]).

We showed how a single constraint able to use both fixed and non-fixed graph vari-
ables is sufficient to model all these graphs matching problems. Furthermore we showed
that this constraint programming approach is competitive with the state of the art algo-
rithm for subgraph isomorphism vflib based on the Ullman graph matching algorithm;
by solving substantially more instances (our approach solves more complex instances)
and requiring a small overhead over the simple instances.

Future work includes the definition of consistency for map variables, the analysis of
the impact of our flow-based filtering algorithm for map variables, the design of a more
efficient algorithm (we target O(

√
mn)) for this global constraint and the extension of

graph matching to other graph comparison problems such as subgraph bisimulation [42].
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Abstract. The union-find algorithm can be seen as solving simple equa-
tions between variables or constants. With a few lines of code change, we
generalise its implementation in CHR from equality to arbitrary binary
relations. By choosing the appropriate relations, we can derive fast in-
cremental algorithms for solving certain propositional logic (SAT) prob-
lems and polynomial equations in two variables. In general, we prove that
when the relations are bijective functions, our generalisation yields a cor-
rect algorithm. We also show that bijectivity is a necessary condition for
correctness if the relations include the identity function.

The rules of our generic algorithm have additional properties that
make them suitable for incorporation into constraint solvers: from clas-
sical union-find, they inherit a compact solved form and quasi-linear
time and space complexity. By nature of CHR, they are anytime and
online algorithms. They solve and simplify the constraints in the prob-
lem, and can test them for entailment, even when the constraints arrive
incrementally.

1 Introduction

Constraint Handling Rules (CHR) [Frü98, FA03, Frü08] is a logical constraint-
based concurrent committed-choice programming language consisting of guarded
rules that rewrite conjunctions of atomic formulas. The classical optimal union-
find algorithm [TvL84] can be implemented in CHR with best-known quasi-
linear time complexity [SF06, SF05]. This result is not accidental, since the
paper [SSD05] shows that every (RAM machine) algorithm with at least linear
time complexity (an algorithm that at least reads all of its input), can be im-
plemented in CHR with best known time and space complexity. Such a result is
not known to hold in other pure declarative programming languages.

The union-find algorithm maintains disjoint sets under the operation of union.
By definition of set operations, a union operator working on representatives
of sets is an equivalence relation, i.e. we can view sets as equivalence classes.
Especially iff the elements of the set are variables or constants, union can be
seen as equating those elements and giving an efficient way of finding out if two
elements are equivalent (i.e., in the same set).

This paper investigates the question if the union-find algorithm written in
CHR can be generalised so that other relations than simple equations between
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two variables are possible without compromising correctness and efficiency. Our
generalised union-find algorithm then maintains relations between elements un-
der the operation of adding relations.

From classical optimal union-find, our generalised algorithm inherits amor-
tised quasi-linear time and space complexity as well as the possibility to both
assert relations (tell) and test for entailed (implied) relations (ask) as will be
explained below.

CHR is used here as an effective general-purpose programming language for
implementing classical algorithms. Still, by nature of CHR, our implementation
is an anytime (approximation) algorithm and online (incremental) algorithm.
Anytime algorithms can be stopped during their execution and exhibit an in-
termediate result from which to continue computation. In CHR, we can stop
after any rule application and observe the intermediate result in the current
state (store). Online algorithm means that the input (in CHR, the constraints
of a query) can arrive incrementally, one after the other, without the need to
recompute from scratch.

In the context of this paper, the algorithms are used in a classical way, i.e.
with certain input to produce a desired output. We do not make use of the
concurrent constraint programming features of CHR, where execution is also
possible with incomplete and unknown inputs and where constraints - in this
context, operations - are delayed until further information becomes available.

We can interpret the relations that we maintain as non-trivial equations. Un-
der this point of view, our generalisation produces a compact solved normal form
that represents all solutions of the given problem (a set of equations). The solu-
tion has at most the size of the original problem. We can also test the equations
for entailment. All this is possible even when the constraints arrive incremen-
tally. Hence our algorithm and its operation constraints are well-suited to be
used inside constraint solvers.

Overview of the Paper. In the next two sections we quickly introduce CHR
and then the union-find algorithm and its implementation in CHR. In Section 4
we generalise the union-find algorithm. The next section proves optimal time and
space complexity of our generalisation. We then show correctness in Section 6
when the involved relations are bijective functions. We present two instances in
Sections 7 and 8. We end with conclusions. This paper is a revised and extended
version of the extended abstract [Frü06].

2 Constraint Handling Rules (CHR)

CHR [Frü98, FA03, Frü08] manipulates conjunctions of constraints (relations,
predicates, atoms) that reside in a constraint store. In the following, the meta-
variables H , G, B and C denote conjunctions of constraints, denoting head (parts
of the head), guard, body of a rule and constraints from a state, respectively.
In a CHR program, the set of constraints defined in the heads and the set
of the constraints used in the guards are disjoint. The former are called CHR
constraints. The latter are called built-in constraints and their meaning is defined
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by a logical theory named CT . Standard built-in constraints are true, false,
as well as syntactic equality = and arithmetic equality =:=.

CHR programs are composed of two main types of rules as given in Fig. 1.
A third, hybrid kind called simpagation rules is not essential for this paper. In
the figure, we also give the declarative, logical reading (meaning) of the rules,
where ȳ are the variables that appear only in the body B of a rule. W.l.o.g. we
assume for simplicity that variables that appear both in the guard and body
also appear in the head of a rule. A simplification rule corresponds to a logical
equivalence provided the guard holds, while a propagation rule corresponds to
an implication.

Simplification rule: H ⇔ G B ∀x̄ (G → (H ↔ ∃ȳ B))
Propagation rule: H ⇒ G B ∀x̄ (G → (H → ∃ȳ B))

Fig. 1. Main Types of CHR Rules and their Logical Reading

The standard (abstract) operational semantics of CHR is given by a transition
system where states are conjunctions of constraints. In Figure 2 we just give the
transition for simplification rules, since we only need this kind of rules in this
paper. For the propagation rules the transition is very similar, the only difference
is that the head is kept. In the transition system, CHR constraints are treated

if H ⇔ G | B is a copy of a rule H ⇔ G | B with new variables X̄
and CT |= ∀(C → ∃X̄(H=H ′ ∧ G))
then (H ′ ∧ C) �−→ (B ∧ H=H ′ ∧ C)

Fig. 2. State transition for simplification rules

on a syntactic level, while built-in constraints are treated on a semantic level
using logic. A simplification rule replaces instances of the CHR constraints H
by B provided the guard test C holds. A propagation rule instead just adds B
to H without removing anything.

The constraints of the store comprise the state of an execution. Starting from
an arbitrary initial store (called query), CHR rules are applied exhaustively until
a fixpoint is reached. The resulting sequence of state transitions is called a com-
putation. A rule is applicable, if its head constraints are matched by constraints
in the current store one-by-one and if, under this matching, the guard of the rule
is logically implied by the constraints in the store. This applicability condition is
formally defined by the formula CT |= ∀(C → ∃X̄(H=H ′∧G)) in the transition
system, where CT is the logical theory for the constraints used in guards of the
rules. Any of the applicable rules can be applied, and the application cannot be
undone, it is committed-choice.

The standard semantics is too abstract to describe the details of CHR im-
plementations. For this purpose, an instance of the standard semantics, called
refined semantics was formalised in [DSdlBH04]. Our complexity proof relies on
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this refined semantics. We will shortly describe this semantics. It is, however,
beyond the scope of the paper to present the details of this semantics.

Queries are executed from left to right and for each new constraint, rules
are applied top-down in the textual reading order of the program. Trivial non-
termination of propagation rule applications is avoided by applying them at most
once to the same constraints. Built-in constraints in the store are simplified and
solved, and that in particular variables that are constrained to take a unique
value are equated with that value.

In this refined semantics of actual implementations, a CHR constraint in a
query can be understood as a procedure that goes efficiently through the rules
of the program in the order they are written, and when it matches a head
constraint of a rule, it will look for the other, partner constraints of the head
in the constraint store and check the guard until an applicable rule is found.
We consider such a constraint to be active. If the active constraint has not been
removed after trying all rules, it will be put into the constraint store. Constraints
from the store will be reconsidered (woken) if newly added built-in constraints
constrain variables of the constraint, because then rules may become applicable
since their guards are now implied. In particular this will be the case if a syntactic
or arithmetic equality binds a variable to a constant or another variable.

3 The Union-Find Algorithm

In this section we follow the exposition of [SF06]. The classical union-find (also
referred to as disjoint-set-union) algorithm was introduced by Tarjan in the
seventies [TvL84]. A classic survey on the topic is [GI91]. The algorithm solves
the problem of maintaining a collection of disjoint sets under the operation of
union. Each set is represented by a rooted tree, whose nodes are the elements of
the set. The root is called the representative of the set. The representative may
change when the set is updated by a union operation. With the algorithm come
three operations on the sets:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained.
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

changing the representative).

A new element must be introduced exactly once with make before being subject
to union and find operations. To find out if two elements are in the same set
already, i.e. to check entailment, one finds their representatives and checks them
for equality, i.e. checks find(X)=find(Y).

3.1 Implementing Union-Find in CHR

In the naive union-find algorithm without optimisations, the operations are im-
plemented as follows:
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– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree. Return the

root as representative.
– union(X,Y): find the representatives of X and Y, respectively. To join the

two trees, we link them by making one root point to the other root.

The following CHR program implements the operations and data structures of
the naive union-find algorithm. The CHR constraints make/1, union/2, find/2
and auxiliary link/2 define the corresponding operations (functions are written
in relational form), so we call them operation constraints. The constraints root/1
and ->/2 (using infix notation) represent the tree data structure and we call them
data constraints. We use infix notation for ->/2 to evoke the image of a pointer
(directed arc).

make @ make(X) <=> root(X).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> X -> Y, find(Y,R).
findRoot @ root(X), find(X,R) <=> root(X), R=X.

linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> X -> Y, root(Y).

In the rules findNode and findRoot, the data constraints X->Y and root(X),
respectively, occur in the head and body of their rules. In a naive CHR implemen-
tation, when the rule applies, they will be removed and immediately re-added
again. For the programs discussed in this paper, this causes only constant time
overhead. In general, the simpagation rule notation as well as optimising CHR
compilers avoid this overhead by leaving the constraint in the store.

3.2 Optimised Union-Find

The basic algorithm requires O(n) time per find (and union) operation in the
worst case, where n is the number of elements (and thus of make operations).
With two independent optimisations that keep the tree shallow and balanced,
one can achieve logarithmic worst-case and quasi-constant (i.e. almost constant)
amortised running time per operation.

The first optimisation is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimisation is union-by-rank. It keeps the tree shallow and bal-
anced by pointing the root of the smaller tree to the root of the larger tree
without changing its rank. Rank refers to an upper bound of the tree depth (tree
height). If the two trees have the same rank, either direction of pointing is chosen
and the rank is incremented by one. With this optimisation, the height of the
tree can be logarithmically bound.

The following CHR program implements the resulting optimised classical
union-find algorithm with path compression for find and union-by-rank [TvL84].
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make @ make(X) <=> root(X,0).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> find(Y,R), X -> R.
findRoot @ root(X,N), find(X,R) <=> root(X,N), R=X.

linkEq @ link(X,X) <=> true.
linkLeft @ link(X,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

Y -> X, root(X,max(RX,RY+1)).
linkRight@ link(X,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X -> Y, root(Y,max(RY,RX+1)).

When compared to the naive version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. The
union/2 operation constraint is implemented exactly as for the naive algorithm.
The rule findNode has been extended for path compression. By the help of
the variable R that serves as a place holder for the result of the find operation,
path compression is already achieved during the first pass, i.e. during the find
operation. In the body of the rule, the order of constraints find(Y,R), X->R
optimises execution under the refined semantics of CHR, since under left-to-right
execution, the pointer constraint is only introduced when R has been computed
by find. The link rule has been split into two rules, linkLeft and linkRight,
to reflect the optimisation of union-by-rank.

4 Generalised Union-Find

The idea of generalising union find is to replace equations between variables
by binary relations. Our generalised union-find algorithm then maintains rela-
tions between elements under the operation of adding relations. The operation
constraints union, find, link and the data constraint -> get an additional ar-
gument to hold the relation. The operation union now asserts a given relation
between its two variables, find finds the relation between a given variable and
the root of the tree in which it occurs. The operation link stores the relation in
the tree data constraint. The arcs in the tree are labeled by relations now.

We assume that in queries, all relations are given. While the program in
principle would also compute with unknown relations, we are not interested in
these computations in the context of this paper. Remember that a query contains
only make, union and find operations. A new element must be introduced first
by a single make before subjected to union and find.

We need some standard operations on relations from relational algebra and a
non-standard one, combine. The operations are implemented by constraints as
follows, where id is the identity function:

– compose(r1, r2, r3) iff r3 := r1 ◦ r2

– invert(r1, r2) iff r2 := r−1
1
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– equal(r1) iff r1 = id
– combine(r1, r2, r3, r4) iff r4 := r−1

1 ◦ r3 ◦ r2

The commutative diagram below shows the relations between the four rela-
tions that are arguments of combine. The question mark after AB reminds us that
this relation is the one that combine computes from the other three relations.

X -- R1 -- A
| |
R3 R4?
| |
Y -- R2 -- B

The following code extends the CHR implementation of optimal union-
find by additional arguments (the relations) and by additional constraints on
them (the operations on relations). These additions are in italics for clar-
ity. Our implementation in the Sicstus 3 Prolog CHR library is available
at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
and can be run with CHR online at chr.informatik.uni-ulm.de/∼webchr/
webchr1.

make @ make(X) <=> root(X,0).
union @ union(X,XY,Y) <=> find(X,XA,A), find(Y,YB,B),

combine(XA,YB,XY,AB), link(A,AB,B).

findNode @ X-XY->Y, find(X,XR,R) <=> find(Y,YR,R),
compose(XY,YR,XR), X-XR->R.

findRoot @ root(X,N), find(X,XR,R) <=> root(X,N), equal(XR), X=R.

linkEq @ link(X,XX,X) <=> equal(XX).
linkLeft @ link(X,XY,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

invert(XY,YX), Y-YX->X, root(X,max(RX,RY+1)).
linkRight@ link(X,XY,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X-XY->Y, root(Y,max(RY,RX+1)).

The operation constraint union(X,XY,Y) now means that we enforce relation
XY between X and Y. The operation find still returns the root for a given node,
but also the relation that holds between the node and the root. In the union,
combine computes the relation AB that must hold between the roots that are to
be linked from the initial relation XY and the relations XA and YB resulting from
the two find operations.

Note that in the linkEq rule, the link operation now tests if the relation XX
given between two identical variables X is the identity relation. If this is not the
case, the overall computation will stop with an inconsistency error. This hap-
pens for example, if we try to union the same two variables twice with different
incompatible relations between them.

The choice of the operations on relations added in the program is justified
by the intended correctness with regard to the logical reading of the program as

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
chr.informatik.uni-ulm.de/~webchr/
webchr1
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discussed in Section 6. Since all relations in a query are given, and since then the
find operation returns a relation, the operations on relations compose, combine
and invert compute a relation (the last argument) from given relations and
equal checks a given relation.

In the body of the rules the sequence of the constraints takes advantage of
the left-to-right execution order of the refined CHR semantics. The order of
constraints is the same as of the corresponding operations in a procedural pro-
gramming language.

Normalisation and Entailment Checking

By using the find operation, the results can be further normalised: for each
variable in the problem, we issue a find operation. It will return the relation to
the root variable and as a side-effect the tree will be compressed to have a direct
pointer between the two variables. So afterwards, the solved form contains data
constraints of the form Xi-XR->Rj, where all Xi are different (and the Rj are root
variables only).

Also we can check for entailment, i.e. ask if a given relation holds between
two given variables. This is the case if their roots are the same (otherwise they
are unrelated) and if asserting the relation using union would not change the
tree. That is, a given relation already holds between two variables if the union
operation leads to a link operation that does not update the tree. This is the
case if the linkEq rule is applicable. Therefore the following special instance of
the union rule suffices for entailment of a relation (X XY Y):

unioned?(X,XY,Y) <=>
find(X,XA,A),find(Y,YB,B), combine(XA,YB,XY,AB), A==B, equal(AB).

A==B checks if A and B are identical and equal(AB) checks if AB is the identity
relation. These checks are inherited from the linkEq rule.

The query associated with the entailment test can also be modified to find
out what relation between two given variables X and Y holds. In that case we
replace combine(XA,YB,XY,AB) according to its definition so that it computes
XY from XA, YB and AB (which must be identity). We get the rule:

related?(X,XY,Y) <=>
find(X,XA,A),find(Y,YB,B), A==B, invert(YB,BY),compose(XA,BY,XY).

where just X and Y are given.

5 Complexity

Our algorithm is a canonical extension (proper generalisation) of the optimised
union-find algorithm in CHR: we added arguments holding the relations to ex-
isting CHR constraints. In the rules, these additional arguments for the relations
are variables. In the head of each rule, these variables are all distinct. The guards
have not been changed. The additional constraints in the rule bodies only involve
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variables for relations. These operations on relations can be performed in con-
stant time. Moreover, if we specialise our algorithm to the case where the only
relation is identity id, we get back the original program. These observations are
an indication that we can preserve the complexity and correctness results of the
original algorithm under certain conditions.

We first have to establish some general lemmas for CHR rule applications.
We restrict ourselves to simplification rules in this section, since this is the only
type of rules we use in this paper. Then, our proof is based on a mapping from
computations in our generalised algorithm to computation in the original union-
find algorithm.

Definition 1. Given a CHR simplification rule R = H ⇔ G | B, then (H ∧ G)
is called the minimal state of R and the transition (H ∧G)  −→ (B ∧G) is called
the minimal transition of R.

Minimal transitions capture the essence of a CHR rule application.

Lemma 1 (Minimal Transitions). A CHR simplification rule R = H ⇔ G |
B is applicable to its minimal state, (H ∧G), leading to the minimal transition
of R, (H ∧ G)  −→ (B ∧ G).

Proof. The proof is straightforward from the operational semantics of CHR
given as transition system in Figure 2. We take a copy of the rule R, H ′ ⇔
G′ | B′. It obviously satisfies the rule applicability condition of the transition,
CT |= ∀(G → ∃X̄(H ′=H ∧ G′)), where H ′=H is simply a variable renaming
that makes G and G′ equivalent. We can apply this variable renaming in the
resulting state (B′ ∧ H ′=H ∧ G) to get (B ∧ G). !"

Lemma 2 (Arbitrary Transitions). Any transition (H ′ ∧ C)  −→ (B ∧
H=H ′ ∧ C) resulting from application of a rule R (cf. Fig. 2) can be derived
from the minimal transition (H ∧G)  −→ (B ∧G) of R (cf. Lemma 1) by instan-
tiating variables according to the equation H=H ′ and by replacing the guard
constraints G with H=H ′ ∧ C.

Proof. Based on the transition system in Fig. 2, we only have to note that the
source states (H ∧ H=H ′ ∧ C) and (H ′ ∧ C) are identical: By definition H and
(H ′ ∧ C) do not have any variables in common, therefore we can replace H by
H ′ and remove the redundant resulting equation H ′=H ′. !"

In our algorithm, rule applications take constant time as in the original union-find
algorithm in CHR if the additional operations on relations take constant time.

Lemma 3 (Union-Find Rule Application Complexity). Every rule of the
generalised union-find algorithm can be applied in constant time and space un-
der the refined semantics of CHR [DSdlBH04], if the introduced operations on
relations (combine, compose, equal, invert) take constant time and space.

Proof Sketch. The proof is essentially the same as that for the original optimal
union-find algorithm as presented in Section 6 of [SF06]. We only repeat the
main points here.
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Following the refined semantics of CHR [DSdlBH04], CHR implementations
exist where all of the following take constant time [SF06]:

– finding all constraints with a particular value in a given argument position
(due to indexing),

– matching of constants and variables in the head of a rule,
– testing and solving simple built-in constraints (like =, =< and >=),
– adding and deleting CHR constraints.

It is further assumed that storing the (data) constraints and their indexes takes
constant space per constraint and variable.

From the above assumptions it is shown that processing a data constraint
under the refined semantics takes constant time: the constraint is called, some
rules are tried, some partner constraints which share a variable with the active
constraint are looked for, but none are present, and finally the call ends with
inserting the data constraint into the constraint store. It follows that all rule
tries and applications with an active constraint take constant time. !"

We now can show optimal time and space complexity of our algorithm.

Theorem 1 (Optimal Complexity). Our generalised union-find algorithm in
CHR has the same time and space complexity as the original optimised union-
find algorithm if the introduced operations on relations (combine, compose,
equal, invert) take constant time and space.

Proof Sketch. We prove the Theorem by showing that any computation in
our generalised algorithm can be mapped into a computation of the original
union-find algorithm with the same time and space complexity. The claim is
shown by induction on length of the computation and case analysis of the rules
applicable in a computation step. It is thus sufficient to consider individual rule
applications. Since each rule application takes constant time and space in both
algorithms by Lemma 3, it suffices to show that the computations lengths are
linearily related.

We construct a function that maps transitions of our generalised union-find
algorithm to transitions of the optimised union-find algorithm. The mapping
function τ simply removes the additional arguments holding the relations and
additional constraints for the operations on the relations. The function τ is
exhaustively defined by the following equalities:

τ((A  −→ B)) = τ(A)  −→ τ(B)
τ((A ∧ B)) = τ(A) ∧ τ(B)
τ(make(X)) = make(X)
τ(union(X,XY,Y)) = union(X,Y)
τ(find(X,XY,Y)) = find(X,Y)
τ(link(X,XY,Y)) = link(X,Y)
τ(X=Y) = true if X and Y are relations
τ(X=Y) = X=Y if X and Y are elements
τ(X>=Y) = X>=Y
τ(root(X,Y)) = root(X,Y)
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τ(X-XY->Y)) = X->Y
τ(combine(XA,YB,XY,AB)) = true
τ(compose(XY,YR,XR)) = true
τ(equal(XX)) = true
τ(invert(XY,YX)) = true
Note that the constraint true is the neutral element for conjunction, i.e. true

∧ A and A ∧ true are each the same as A.
We now establish correctness of the mapping: in our generic algorithm, tran-

sitions can be caused by the application of the union-find rules or of rules that
define the operations on relations (combine, compose, equal, invert) for the
specific instance. For the union-find rules, we have to show that for each rule
application in a transition of our generic algorithm, there is an application of the
rule by the same name in the corresponding mapped transition in the original
union-find program.

We need not apply rules to arbitrary states, but just have to consider minimal
transitions by Lemma 2. It remains to show that the function τ correctly maps
the queries and the minimal transitions for each rule of union-find. For the union
rule we have that
τ(union(X,XY,Y)  −→ find(X,XA,A) ∧ find(Y,YB,B) ∧

combine(XA,YB,XY,AB) ∧ link(A,AB,B)) =
union(X,Y)  −→ find(X,A) ∧ find(Y,B) ∧ link(A,B).

Analogously, the mapping can be applied to the other rules of the program.
If one of the rules for operations on relations is applied in a transition, the

source and target state in the mapped transition are identical, because τ maps
these operations and the built-in syntactic equalities for relations resulting from
them all to true. Since we required that these operations take constant time and
space, each operation can only cause a constant number of transitions. There-
fore their execution causes only a constant time overhead for each rule of our
algorithm.

We also have to consider inconsistency errors caused by execution of equal
caused by the application of a linkeq rule. In that case, the computation stops
in our generic algorithm, while in the corresponding mapped transition, equal
is mapped to true and the computation can possibly proceed. Clearly it needs
less time and space to stop a computation early. !"

6 Correctness

By correctness of a program we mean that the logical reading of the rules of
a program is a logical consequence of a specification given as a logical theory.
Since our generalised union-find algorithm maintains relations between elements
under the operation of adding relations, the specification is a theory for these
relations. Since our program should work with arbitrary relations, we expect the
logical reading of its rules to follow from the empty theory, i.e. to be tautologies.
We will see that this is not the case for all rules. To this end, we prove that when
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the relations involved are bijective functions, our generalisation yields a correct
algorithm. We also show that bijectivity is a necessary condition for correctness
if the relations include the identity function.

In the logical reading of our rules, we replace union, find, link and -> as
intended by the binary relations between their variables (using infix notation),
and the constraints for operations on relations by their definitions using func-
tional notation. As usual, formulas are assumed to be universally closed. Even
though the logical reading of union-find does not reflect the intended meaning
of the root data constraint [SF05], the logical reading suffices for our purposes.

(make) make(X) ⇔ root(X,0).
(union) (X XY Y) ⇔ ∃XA,A,YB,B,AB ((X XA A) ∧ (Y YB B) ∧

XA^-1◦XY◦YB=AB ∧ (A AB B))

(findNode) (X XY Y) ∧ (X XR R) ⇔ ∃YR ((Y YR R) ∧
XY◦YR=XR ∧ (X XR R))

(findRoot) root(X,N) ∧ (X XR R) ⇔ root(X,N) ∧ XR=id ∧ X=R

(linkEq) (X XX X) ⇔ XX=id
(linkLeft) RX>=RY ⇒ ((X XY Y) ∧ root(X,RX) ∧ root(Y,RY) ⇔

∃YX (XY^-1=YX ∧ (Y YX X) ∧ root(X,max(RX,RY+1))))
(linkRight) RY>=RX ⇒ ((X XY Y) ∧ root(Y,RY) ∧ root(X,RX) ⇔

(X XY Y) ∧ root(Y,max(RY,RX+1)))

Most rules lead to formulas that do not impose any restriction on the binary
relations involved. However, the logical reading of linkEq and findRoot implies
that the only relation that is allowed to hold between identical variables is the
identity function id. Most importantly, the meaning of the findNode rule is a
logical equivalence, that is not a tautology and restricts the involved relations.
For example, it does not hold for ≤=XR=YR=XY even though ≤ ◦ ≤=≤.

We now show that our implementation is correct if the involved relations are
bijective functions. In that case, the composition operation is precise enough in
that it allows to derive any of the three involved relations from the other two.
For most other types of relations, our generalised union-find algorithm is not
correct, since it looses information due to composition.

Definition 2. A function f is bijective if the function is injective and surjective,
i.e. f(x̄) = y ∧ f(ū) = v ∧ (x̄ = ū ∨ y = v) → x̄ = ū ∧ y = v.

Thus a unary function f is bijective if for every x there is exactly one y and
vice versa such that f(x) = y. Bijective functions are closed under inverse and
composition.

Theorem 2 (Correctness). The logical reading of the rules of our generalised
union-find algorithm is a consequence of a theory for the relations if these rela-
tions are bijective functions.
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Proof. The identity function id needed by rules findRoot and linkEq is a
bijective function. The findNode rule leads to the non-tautological formula,

(X XR R) ∧ (X XY Y) ⇔ (X XR R) ∧ (Y YR R) where XY◦YR=XR.
This condition is obviously satisfied if the involved relations are bijective func-

tions, because then, for any value given to one of the variables, the values for the
other two variables are uniquely determined on both sides of the logical equiv-
alence and there cannot be another triple of values (x, y, z) that has any of the
values in the same component. All other rules are tautologies. !"

Next we show that when the identity function id is one of the relations, then all
relations must be bijective.

Theorem 3 (Bijectiveness). The logical reading of the rules of our generalised
union-find algorithm implies that all relations are bijective if the allowed relations
include the identity function.

Proof. In the formula for rule findNode,

(X XR R) ∧ (X XY Y) ⇔ (X XR R) ∧ (Y YR R) where XY◦YR=XR,
we consider two cases in which we replace either relation XY or relation YR by

the identity function id. This leads to the two formulas

(X XR R) ∧ (X id Y) ⇔ (X XR R) ∧ (Y XR R) and
(X XR R) ∧ (X XR Y) ⇔ (X XR R) ∧ (Y id R).

The former formula means that any relation XR used must be surjective, the
latter means that any relation XR must be injective. Hence any relation must be
bijective. !"
The two instances of our generalised union-find algorithm that we will discuss
next involve bijective functions only.

7 Instance of Boolean Equations

With our generalised union-find algorithm, we can solve inequations between
Boolean variables (propositions), i.e. certain 2-SAT problems. This instance fea-
tures thus a (small) finite domain and a finite number of relations. In the CHR
implementation, the relations are eq for = and ne for �=, and the truth values are
0 for false and 1 for true. Note that the ne relation holds if the Boolean exclusive-
or function (xor) returns true. The operations on relations can be defined by
the following rules:

compose(eq,R,S) <=> S=R. invert(R,S) <=> S=R.
compose(R,eq,S) <=> S=R.
compose(R,R,S) <=> S=eq. equal(S) <=> S=eq.

combine(XA,YB,XY,AB) <=>
compose(XY,YB,XB), invert(XA,AX), compose(AX,XB,AB).
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Here is a simple example of a query for Booleans. Note that we introduce the
truth values 0 and 1 by make and add union(0,ne,1) to enforce that they are
distinct. This suffices to solve this type of Boolean inequations.

?- make(0),make(1),union(0,ne,1),
make(A),make(B),union(A,eq,B),union(A,ne,0),union(B,eq,1).

root(A,2), B-eq->A, 0-ne->A, 1-eq->A.

The result of the query shows that A is also equal to 1. More examples are
available online.

Related Work. It is well known that 2-SAT (conjunctions of disjunctions of at
most two literals) [APT79] and Horn-SAT (conjunctions of disjunctions with at
most one positive literal, i.e. propositional Horn clauses) [BB79, DG84, Min88]
can be checked for satisfiability in linear time. The class of Boolean equations and
inequations we can deal with is a proper subset of 2-SAT, but not of Horn-SAT,
since A ne B ⇔ (A ∨ B) ∧ (¬A ∨ ¬B).

These two classical linear-time SAT algorithms are not incremental. They as-
sume that the problem and its graph representation are initially known, because
it has to be traversed along its edges. The algorithms only check for satisfiability
and can report one possible solution, but they do not simplify or solve the given
problem in a general way, so the results are less informative than ours.

The 2-SAT algorithm translates a given problem into a directed graph where
arcs are the implications that are logically equivalent to the individual clauses
in the problem. It then relies on a linear-time preprocessing of the graph
to find is maximal strongly connected components in reverse topological or-
der. Respecting the topological order, truth values are propagated through the
components, where all nodes in a component are assigned to the same truth
value.

In contrast, our generalised union-find algorithm produces a simple normal
form representing all solutions. Due to the properties of the generalised union-
find algorithm, our Boolean instance can be integrated into a Boolean constraint
solver. For example, the classical Boolean solver in CHR is based on value (unit)
propagation, with rules such as and(X,Y,Z) <=> X=0 | Z=0, and propagation of
equalities, e.g. and(X,Y,Z) <=> X=Y | Y=Z. It can be now extended by propa-
gation of inequalities, e.g. and(X,Y,Z) <=> X ne Y | Z eq 0 and and(X,Y,Z)
<=> X ne Z | X eq 1, Y eq 0, Z eq 0.

Can we extend our algorithm instance of generalised union-find to deal with
2-SAT? As put to use in the classical algorithm, any disjunction in two variables,
A ∨ B can be written as implication ¬A → B. Since we can implement negation
using an auxiliary variable, e.g. A ne negA, we just would have to introduce the
relation → (that corresponds to a total non-strict order ≤ on the truth values).
But the implication relation looses too much information when composed. For
example, given a tree B-≤->A, C-≤->A, B and C can be arbitrarily related.
If one now asserts union(B,eq,C), it has no effect on the tree, and thus the
information that B eq C is lost.
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8 Instance of Linear Polynomials

Another instance of our generalised union-find algorithm deals with linear poly-
nomial equations in two variables. It features an infinite domain and an infinite
number of relations. In this instance, the CHR data constraint X-A#B->Y (with
A �=0) means X=A*Y+B. The operations on relations are defined as follows:

compose(A#B,C#D,S) <=> S = A*C # A*D+B.
invert(A#B,S) <=> S = 1/A # -B/A. equal(S) <=> S = 1#0.

combine(XA,YB,XY,AB) <=>
compose(XY,YB,XB), invert(XA,AX), compose(AX,XB,AB).

Again, a small example illustrates the behaviour of this instance.

?- make(X),make(Y),make(Z),make(W),
union(X,2#3,Y),union(Y,0.5#2,Z),union(X,1#6,W).

root(X,1), Y-0.5#(-1.5)->X, Z-1.0#(-7.0)->X, W-1.0#(-6.0)->X.

Note that the generic linkEq rule asserts that the relation XX in link(X,XX,X)
must be the identity function. Thus link(X,1#0,X) is fine, but all other equa-
tions of the form link(X,A#B,X) with A#B different from 1#0 will lead to
an inconsistency error. While this is correct for link(X,1#1,X), the equation
link(X,2#1,X) should not fail as it does, since it has the solution X=-1. Indeed,
in our program, an inconsistency will occur whenever a variable is fixed, i.e.
determined to take a unique value. Our implementation succeeds exactly when
the set of equations has infinitely many solutions.

We now introduce concrete numeric values and solve for determined variables.
We express numbers as multiples of the number 1. To make sure that the number
1 always stays the root, so that it can be always found by the find operation, we
add root(1,∞) (instead of make(1)) to the beginning of a query.

We split the linkEq rule into two rules. The first restricts applicability of the
generic linkEq rule to the case where A=1, the second rule applies otherwise, i.e. to
equations that determine their variable (A=\=1) and normalises the equation such
that the coefficient is 1 and the second occurrence of the variable is replaced by 1.

linkEq1 @ link(X,A#B,X) <=> A=:=1 | B=:=0.
linkEq2 @ link(X,A#B,X) <=> A=\=1 | link(X,1#B/(1-A)-1,1).

Note that there is a subtle point about these two rules: X may be the value 1,
and in that case the execution of link(X,1#B/(1-A)-1,1) in the right hand
side of rule linkEq2 will use rule linkEq1 to check if B/(1-A)-1 is zero (which
holds if B = 1-A).

The following small examples illustrate the behaviour of the two new rules
(∞ is chosen to be 9):

?- root(1,9), make(X),make(Y), union(X,2#3,Y),union(X,4#1,1).
root(1,9), X-4#1->1, Y-0.5#(-1.5)->X.
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?- root(1,9), make(X),make(Y), union(X,4#1,1),union(X,2#3,Y).
root(1,9), X-4#1->1, Y-2#(-1)->1.

The queries and answers mean the same, but the answers are syntactically dif-
ferent due to the different order of union operations in the query.

We add another rule that propagates values for determined variables down
the tree data structure and so binds all determined variables in linear time:

X-A#B->N <=> number(N) | X=A*N+B.

?- root(1,9), make(X),make(Y), union(X,2#3,Y),union(X,4#1,1).
root(1,9), X=5, Y=1.

More examples are available online.

Related Work. [AS80] gives a linear time algorithm that is similar to ours,
but is more complicated. Equations correspond to directed arcs in a graph.
Like the 2-SAT algorithm [APT79], it computes maximal strongly connected
components, and thus the problem has to be known form the beginning. Inside
each component, a modification of any linear-time spanning tree algorithm can
be used to simplify the equations. The overall effect is the same as with our
algorithm, and the algorithm is similar on the components, especially if Kruskal’s
algorithm [Kru56] for spanning trees is used which relies on union-find. However,
our algorithm is simpler and more general in its applicability. It does not need
to compute strongly connected components or spanning tress, it directly uses
union-find and moreover is incremental.

9 Conclusions

We systematically extended the applicability of union-find algorithm as imple-
mented in CHR. We saw that the generalisation of the algorithm from main-
taining equalities to certain binary relations (in particular bijective functions
that admit precise composition) is straightforward in CHR and that the gener-
alisation does not compromise quasi-linear time and space efficiency. We have
implemented the generalisation and two instances, for equations and inequa-
tions over Booleans and for linear polynomial equations in two variables. While
linear-time algorithms are known to check satisfiability and to exhibit certain
solutions of these problems, our algorithms are simple instances of our generic
algorithm. Our implementation in the Sicstus 3 Prolog CHR library is available
at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
and can be run at chr.informatik.uni-ulm.de/∼webchr/webchr1.

Our generic algorithm has desirable properties that make it suitable for in-
corporating its instances into constraint solvers: by nature of CHR, our imple-
mentation is an anytime algorithm and online algorithms. The rules solve and
simplify the constraints in the problem, and can test them for entailment, even
when the constraints arrive incrementally, one after the other.

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
chr.informatik.uni-ulm.de/~webchr/webchr1
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From classical optimal union-find, our generic algorithm inherits amortised
quasi-linear time and space complexity as well as the possibility to both assert
relations and test for entailed relations. It produces a compact solved normal
form that represents all solutions of the given problem and has at most the size
of the original problem. By using the find operation, the results can be further
normalised in quasi-linear time. The relation between two given variables can be
found in quasi-constant time using find operations.

We have proven that when the relations involved are bijective functions, our
generalisation yields a correct algorithm. We also showed that bijectivity is a
necessary condition for correctness if the relations include the identity function.
While bijective functions may seem quite a strong restriction we remind the
reader that permutations, isomorphisms and many other mappings (such as en-
codings in cryptography) are bijective functions. Indeed, for a domain of size n,
there exist n! different bijective functions, i.e. more than exponentially many.
Also, most arithmetic functions are at least piecewise bijective, since they are
piecewise monotone.

Future work will try to extend the class of bijective functions to other binary
relations by abandoning the identity function, and investigate the relationship
with classes of tractable constraints. We also would like to find out about the
potential tradeoff between efficiency and precision (i.e. when applying our gen-
eralised union-find to inequalities like ≤).
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Abstract. Combinatorial problems such as scheduling, resource alloca-
tion, and configuration may involve many attributes that can be subject
of user preferences. Traditional optimization approaches compile those
preferences into a single utility function and use it as the optimization
objective when solving the problem, but neither explain why the result-
ing solution satisfies the original preferences, nor indicate the trade-offs
made during problem solving. We argue that the whole problem solving
process becomes more transparent and controllable for the user if it is
based on the original preferences. We will use the original preferences
to control this process and to produce explanations of optimality of the
resulting solution. Based on this explanation, the user can refine the
preference model, thus gaining full control over the problem solver.

1 Introduction

Although impressive progress has been made in solving combinatorial optimiza-
tion problems such as scheduling, resource allocation, and configuration, modern
optimization methods lack easy and wide acceptance in industry. Expert users
often want a detailled control over the choice of a solution and may be reluctant
to give control to an optimizer which ignores existing practices. A good example
is that of planning a project which consists of several tasks. The tasks have to be
assigned to team members and scheduled in time such that constraints on skill,
workload, and task order are respected. There may be standard practices such as
that of assigning team members to their favorite tasks. Those choices may only
be abandoned if they are infeasible or in conflict with more important choices.
If a project planning system completely ignores these standard practices, then
planning experts may be reluctant to accept a plan produced by this system
even if it minimizes global objectives such as the overall project duration.

As standard choices can be abandoned if there is a clear reason, they do
not have the character of constraints, but that of preferences. These preferences
are not formulated on global properties of the resulting plan such as the project
duration, but concern the individual choices that constitute the plan. There may
be preferences for assigning a team member to a task, preferences for planning

F. Fages, F. Rossi, and S. Soliman (Eds.): CSCLP 2007, LNAI 5129, pp. 109–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



110 U. Junker

a task in a certain time period and so on. According to the multi-attribute
utility theory (MAUT) [9], those individual preferences can be aggregated into a
single numerical utility function, which is a weighted sum of subutility functions.
This additive utility function fits well into a mixed integer programming (MIP)
approach and can be supplied as a maximization objective to a MIP optimizer.

The quality of a MIP solution is then measured with respect to the utility
function, but not with respect to the original preferences. For example, a degree
of optimality of 99.8% means that as many preferences as possible have been
satisfied except for 0.2%. Unfortunately, this explanation does not make sense
to the end users who specified the original preferences. If the solution does not
give the most preferred choices to the end users, they would like to know whether
these most preferred choices are infeasible or whether they are in conflict with
other choices that have been made. Explanations of the trade-offs may help users
to accept the solution or to revise the preferences.

We therefore argue that solutions of optimization methods need to be en-
hanced by explanations of optimality in order to become acceptable for the
users. Moreover, these explanations should be given in terms of the original
preferences and in a form that is comprehensible for non-optimization special-
ists. Let us consider a simple configuration problem, namely that of choosing a
vacation destination. Suppose that Hawaii is preferred to Florida for doing wind-
surfing, but that Florida has been selected in the solution. The explanation may
be that the option Hawaii is infeasible since it is too far away. Or the choice of
Hawaii may lead to high hotel costs and thus penalize subsequent choices. Or
the choice of Hawaii may be in conflict with more important choices such as
visiting a theme park. Explanations of this kind exhibit the trade-offs and the
importance orderings that generated the solution and that justify it.

There are other problems of the MAUT approach. Firstly, it assumes that the
individual attributes have complete preference orders. If the user has only spec-
ified a partial ordering, this order will implicitly be completed when compiling
the preferences into a utility function. For example, the user may prefer Hawaii
to Florida, Hawaii to the French Riviera, and the French Riviera to Mexico. We
may compile this into a utility of 3 for Hawaii, 2 for the French Riviera and
for Florida and 1 for Mexico. This implies that Florida is preferred to Mexico,
although the user has not stated this. If the options Hawaii and French Riv-
iera are not possible, then only the option Florida is considered and the option
Mexico is discarded, although the user might express a preferences for Mexico
if both alternatives were presented to her. Hence, implicitly chosen preferences
are problematic if they are in conflict with true user preferences. Secondly, if
the MAUT approach ranks several solutions in the same way, but the user is
not indifferent w.r.t. those solutions, then weight adjustments have to be made
in order to differentiate the solutions and to achieve that trade-offs are made
in the expected way. As small changes in weights can have a tremendous im-
pact on the result, this process is difficult to achieve manually. Thirdly, there
are solutions that represent valid trade-offs, although they do not belong to the
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Fig. 1. An interactive optimization process driven by explanations and preferences

convex hull of the solution space. Those solutions cannot be determined by a
MAUT approach whatever weights are chosen. As these solutions may repre-
sent better compromises than the MAUT-solutions (such as the leximin-optimal
solutions in [3]), this limitation is a severe draw-back. Finally, additive utility
functions suppose complete preferential independence and are not able to deal
with context-dependent preferences [1].

Although the completeness and independence assumptions of the MAUT
model are of great benefit for the optimizer, they may hinder fruitful inter-
actions between the user and the optimizer. The user may start with rather
incomplete preferences and refine them dependent on the initial solutions. In
order to enable this, we follow the vision in [2] and use the original preferences
to control the problem solving process. Our approach is based on multi-objective
optimization. The problem is decomposed into alternative sequences of single-
criterion optimization problems, which can be solved by standard optimizers.
The chosen sequence gives information that explains the optimality of the solu-
tion. Based on the explanation, the user can either accept the solution or modify
the preferences. The problem solver then modifies the solution correspondingly.
Preferences thus allow the user to interact with the problem solver and to control
its behaviour (see Figure 1). This approach has been applied to configuration
problems [8], but is of interest for constraint programming in general.

The paper is organized as follows. We first introduce constraint satisfaction
problems with preferences and then discuss different optimization problems. We
start with atomic single-criterion optimization problems. Lexicographic opti-
mization tells us how to apply multiple atomic optimization steps for different
criteria in sequence. Alternative sequences lead to different lexicographic solu-
tions. The user can choose among them by imposing an importance ordering
between criteria. Finally, we discuss Pareto-optimal solutions which represent
the different ways to make trade-offs or compromises between conflicting cri-
teria. For each of these optimization problems, we give a solved form and an
explanation of optimality which helps the user to modify the preference model
and the problem solver outcome. Algorithms for effectively computing optimal
solutions are beyond of the scope of this paper and can be found in [5,7].
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2 Combinatorial Problems with Preferences

2.1 Variables and Domains

Throughout this paper, we consider a finite set of variables X where each variable
x ∈ X has a domain D(x). For example, consider three variables x1, x2, x3 of a
vacation configuration example. The domain of x1 contains the possible activities
of the vacation, the domain of x2 contains the possible vacation destinations, and
the domain of x3 contains the possible hotel chains:

D(x1) := {Casino, CliffDiving, FilmStudio, SeaPark, WindSurfing}
D(x2) := {Acapulco, Antibes, Honolulu, LosAngeles, Miami}
D(x3) := {H1, H2, H3, H4, H5, H6}

Each value v ∈ D(x) defines a possible value assignment x = v to x. A set
that contains exactly one of those value assignments for each variable in X and
that contains no other elements is called an assignment to X . For example, a
wind-surfing vacation in Honolulu’s H3 chain is represented by the assignment
σ1 := {x1 = WindSurfing, x2 = Honolulu, x3 = H3}. The set of all assignments
to X is called the problem space of X . Given an assignment σ to X we can project
it to a subset Y of the variables by choosing the value assignments to elements
of Y :

σ[Y ] := {(x = v) ∈ σ | x ∈ Y } (1)

For example, projecting the assignment σ1 to the vacation activity and the vaca-
tion destination results into σ1[{x1, x2}] = {x1 = WindSurfing, x2 = Honolulu}.

2.2 Constraints

We can restrict the problem space of X by defining constraints on variables in
X . A constraint c has a scope Xc ⊆ X and a ‘relation’ which we express by a set
Rc of assignments to the scope Xc. This set can be specified explicitly in form of
a table where each column corresponds to a variable in Xc, each row corresponds
to an assignment in Rc, and the value v from a value assignment (x = v) ∈ σ
is put in the cell for column x and row σ. Tables 1 and 2 show two constraints
of the vacation example. The first constraint describes the activities that are
possible in a city and has the scope {x1, x2}. The second constraint shows which
hotel chain is available in which city and has the scope {x2, x3}. The relation
Rc can also be specified by a logical formula that involves the variables from
Xc and the operations from a given mathematical structure (such as arithmetic
operations, boolean comparisons, and boolean operations).

A constraint satisfaction problem CSP for X is given by a finite set of con-
straints C the scopes of which are all subsets of X . A CSP is finite if all its
domains and relations are finite. A constraint c is satisfied by an assignment σ
to X iff σ[Xc] is an element of Rc. An assignment σ is a solution of C iff it sat-
isfies all constraints of C. If a CSP has no solution then it is called inconsistent.
It is sometimes convenient to replace a CSP C by the conjunction

∧
c∈C c of its

constraints and vice versa.
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Table 1. Constraint c1

Activity x1 City x2

Casino Antibes
Cliffdiving Acapulco
FilmStudio LosAngeles
SeaPark Antibes
SeaPark LosAngeles

WindSurfing Antibes
WindSurfing Honolulu
WindSurfing Miami

Table 2. Constraint c2

City x2 Hotel chain x3

Acapulco H2
Acapulco H6
Antibes H3
Antibes H5
Honolulu H3
Honolulu H5

LosAngeles H2
LosAngeles H4
LosAngeles H6

Miami H1
Miami H4

2.3 Criteria and Preferences

A CSP can have multiple solutions and the user may prefer certain solutions to
others. Since there may be an exponential number of solutions, it is not feasible
to generate all solutions first and then to ask the user to express preferences
between the solutions. The user will instead formulate preferences on certain
properties of the solution such as the vacation region or the price of the vacation.
These criteria are mathematical functions from the problem space to an outcome
domain. Formally, a criterion z with domain Ω is an expression f(x1, . . . , xn)
where x1, . . . , xn are variables from X and f is a function of signature D(x1) ×
. . . × D(xn) → Ω. We suppose that the function f can be formulated with the
operators of the constraint language (e.g. sum, min, max, conditional expression)
or by a table. We can evaluate the expression f(x1, . . . , xn) if an assignment σ
to the variables in X is given. We denote the resulting value by z(σ).

For example, we want to express preferences on the activity, the vacation
region, and the price and quality of the hotel chain. We introduce four criteria
z1, z2, z3, z4 and their respective domains Ω1, Ω2, Ω3, Ω4. The criterion z1 is equal
to the vacation activity x1 and has the domain Ω1 := D(x1). The other criteria
are defined via a table (see Tables 3 and 4) and have the following domains:

Ω2 := {California, FrenchRiviera, Florida, Hawaii, Mexico}
Ω3 := [0, 1000]
Ω4 := {Economic, Basic, Standard, Luxury}

The user can compare the different outcomes in a domain Ω and formulate
preferences between them. Preferences are modelled in form of a preorder � on
Ω. The preorder consists of a strict part # and an indifference relation ∼. If
ω1 � ω2 holds for two outcomes ω1, ω2 ∈ Ω, then this means that the outcome
ω1 is at least as preferred as ω2. We do not require that the preference order �
is complete. If neither ω1 � ω2, nor ω2 � ω1 hold, then the preference between
ω1 and ω2 is not specified and the user can refine it later on.

A preorder is a transitive and reflexive relation. It is not necessary to specify
this order exhaustively. It can be obtained by determining the reflexive and
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Table 3. Criterion for city

City x2 Region z2

Acapulco Mexico
Antibes FrenchRiviera
Honolulu Hawaii

LosAngeles California
Miami Florida

Table 4. Criteria for hotels

Hotel x3 Price z3 Quality z4

H1 40 Economic
H2 60 Basic
H3 100 Basic
H4 100 Standard
H5 150 Standard
H6 200 Luxury

transitive closure of a set R ⊆ Ω × Ω of user preferences. For example, suppose
that the user prefers Hawaii at least as much as California, California at least as
much as the French Riviera and as Florida, and the French Riviera at least as
much as Mexico. Similarly, the user prefers cliff diving at least as much as sea
park visits, sea park visits at least as much as casino visits and as wind-surfing,
and casino visits and wind-surfing at least as much as visits to film studios.
Finally, the user prefers casino visits at least as much as wind-surfing and vice
versa. Figures 2 and 3 show these preferences (straight arcs and dotted-dashed
arcs) and the corresponding preorders (any arc) in a graphical form.

We are mainly interested in the strict part # of this preorder, namely the set of
all pairs (ω1, ω2) in Ω×Ω such that ω1 � ω2 holds, but not ω2 � ω1. The absence
of a strict preference between two outcomes can either signify indifference or
incompleteness. The strict part of a preorder is a strict partial order, i.e. an
irreflexive and transitive relation. We write ω1 % ω2 as a short-hand for ω1 # ω2

or ω1 = ω2. The relation % is a subset of the preorder �, but the inverse does not
hold in general. In the example, the strict parts are obtained by suppressing the
dotted-dashed arcs and the reflexive arcs of the form (ω, ω). We also consider the
case where the preorder � is complete. The strict part of a complete preorder
is a ranked order, i.e. a strict partial order satisfying the following property: if
ω1 # ω2 then either ω3 # ω2 or ω1 # ω3. Ranked orders can be represented by
utility functions u that map assignments to a numerical value such that u(ω1) >
u(ω2) iff ω1 # ω2. A complete preorder that is additionally anti-symmetric is a
total order. The strict part of a total order is a strict total order, i.e. a strict
partial order that satisfies ω1 # ω2 or ω2 # ω1 or ω1 = ω2.

The user can formulate preferences on multiple criteria. Consider m criteria
z1, . . . , zm with domains Ω1, . . . , Ωm. Furthermore, consider a strict partial order
#i for each domain Ωi. We say that the pair pi := 〈zi,#i〉 of the i-th criterion and
the i-th order is a preference. This terminology is, for example, used in [10]. We
abbreviate a preference 〈zi, >〉 using the increasing order > by maximize(zi) and
a preference 〈zi, <〉 based on the decreasing order by minimize(zi). For exam-
ple, price minimization is expressed as minimize(z3). Preferences thus generalize
optimization objectives as used in CP or MIP.

2.4 Wishes

The user may also formulate wishes about the properties that a solution should
have. For example, the user may wish to spend the vacation in Los Angeles.
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Such a wish is a soft constraint which should be satisfied if possible. Hence, a
solution that satisfies a wish is preferred to a solution that violates the wish.
A wish for constraint c can thus be modelled by a preference 〈zc, >〉, which we
abbreviate by wish(c). It involves a binary criterion, namely the truth value of
the constraint, and an implicit preference ordering that prefers true to false.
Given an assignment σ, the truth value zc of c is defined as follows:

zc(σ) :=

{
1 if σ satisfies c

0 otherwise.
(2)

3 Preference-Based Problem Solving

Combinatorial problems with preferences are classically solved by compiling all
preferences into a single utility function and by determining a solution of the
constraints that has maximal or nearly maximal utility. However, the optimizer
does not give an explanation of optimality in terms of the original preferences.
If the user specified a preference 〈z,#〉, she wants to know whether the criterion
z has its best value in the solution. If not, the user wants to get an explanation
why no better outcome has been obtained for the criterion. If the criterion z is in
conflict with other criteria then the explanation should indicate this conflict and
the trade-off that has been made. We show that explanations of optimality can
be produced if the problem solving process is based on the original preferences.
The form of the explanation will depend on the kind of the optimization prob-
lem. We consider single-criterion optimization, different variants of lexicographic
optimization, and Pareto-optimization.

3.1 Atomic Optimization Step

Given a single preference 〈z,#〉, we are interested in those solutions of the con-
straints C that assign a #-maximal value to the criterion z. A solution σ assigns
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a #-maximal value v to the criterion z iff there is no other solution σ∗ that
assigns a better value v∗ to z, i.e. a value that satisfies v∗ # v. To characterize
those solutions, we introduce an operator, denoted by Max (〈z,#〉), that maps a
constraint C to a new constraint that is satisfied by exactly the solutions that
assign #-maximal values to z. Hence, Max (〈z,#〉)(C) denotes the optimization
problem that need to be solved. As it concerns a single criterion, it need not be
decomposed further and thus represents an atomic optimization step.

If > is a total order, then the preference 〈z, >〉 can be modelled by an ordinal
utility function u that maps each possible outcome ω in the domain of z to a
unique numeric utility value u(ω). We then obtain a classical optimization prob-
lem, namely that of maximizing u(z). This problem can be solved by standard
optimizers (such as constraint-based Branch-and-Bound), which find a solution
of maximum value u∗ for u(z). Since we supposed that > is a total order, there
is a unique outcome ω∗ in the domain of z that has the utility u∗. Hence, each
solution of C that is optimal w.r.t. the preference 〈z, >〉 satisfies the constraint
C∧z = ω∗ and vice versa. Hence, the following equivalence holds for total orders:

Max (〈z, >〉)(C) ≡ C ∧ z = ω∗ (3)

We can thus characterize the entire set of optimal solutions by the constraint
C ∧ z = ω∗ and replace the original problem Max (〈z, >〉)(C) by this constraint
without loosing any optimal solution. Subsequent optimization steps can then
further reduce the set of optimal solutions of Max (〈z, >〉)(C). We also say that
C ∧ z = ω∗ is the solved form of the optimization problem Max (〈z, >〉)(C).

Once the optimization problem has been solved, the user may ask for expla-
nations of optimality such as

1. Why can’t z have a value better than ω∗?
2. Why hasn’t the value ω been chosen for z?

As there is no better value than ω∗ for z, the conjunction of C and the unary
constraint z > ω∗ is inconsistent. As the constraint z > ω∗ is unary, it can
easily be encoded in a constraint solver (e.g. by removing all values smaller than
or equal to ω∗ from the domain of z). We can now determine an explanation
by asking why the set C′ of the conjuncts of C ∧ z > ω∗ is inconsistent. To
answer this question, we determine a conflict for C′, i.e. a minimal subset X ′

of C′ that is inconsistent. This conflict can, for example, be computed by the
QuickXplain-algorithm [6]. Since C is assumed to be consistent, the conflict X ′

needs to contain the constraint z > ω∗. The other elements X := X ′ \ {z > ω∗}
of the conflict then explain why z can’t have a value better than ω∗ w.r.t. the
order >. These constraints X defeat any value for z that is better than the
optimum ω∗. The user might also ask why z has not obtained a specific value
ω. If ω is greater than the optimum ω∗, then the choice z = ω is defeated by X .
Otherwise, ω is smaller than the optimum ω∗ and has not been chosen for that
reason. In order to give the right answer, the explanation of optimality needs to
include the defeaters X and the ordering >.

Let σ be a solution of the problem Max (q)(C) with total preferences q :=
〈z, >〉. An explanation of the Max (q)-optimality of σ is a triple (q, ω∗, X) such
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that ω∗ is equal to the optimum z(σ) and X is a minimal subset of the set of
conjuncts of C for which X ∪ {z > ω∗} is inconsistent.

An example is that of minimizing the hotel price in the vacation example. The
smallest value in the price domain is 0, but obviously this value is not possible as
image of z3. Indeed, the optimal price of the problem Max (minimize(price))(C)
is 40 and an explanation of optimality is (minimize(price), 40, {}).

We are thus able to provide explanations of optimality for atomic optimization
problems with total preferences.

3.2 Alternative Optimizations

In the beginning of an interactive problem solving process, the user will usually
specify only a partial order. Hence, there may be two solutions σ1 and σ2 of
Max (〈z,#〉) that assign two different values ω1 and ω2 to the criterion z such
that neither ω1 is strictly preferred to ω2, nor ω2 is strictly preferred to ω1.
As a consequence, the solved form of Max (〈z,#〉)(C) will be a disjunction of
assignments of the form z = ωi. If Ω∗ is the set of all optimal outcomes, i.e.
the values that are assigned to the criterion z in the different solutions of the
optimization problem, then the solved form of the problem is as follows:

Max (〈z,#〉)(C) ≡
∨

ω∗∈Ω∗

(C ∧ z = ω∗) (4)

An example is the partial preference order #2 on the vacation regions. Suppose
that the cities Honolulu and Los Angeles are not possible due to booking prob-
lems. The problem Max (〈z2,#2〉)(C′) where C′ := C ∧ x2 �= Honolulu ∧ x2 �=
LosAngeles has the optimal outcomes Florida and French Riviera. The solved
form is C′ ∧ (z2 = Florida ∨ z2 = FrenchRiviera).

We can compute this solved form by reducing the optimization problem with
partial orders to multiple optimization problems with total orders. For this pur-
pose, we consider a strict total order > on Ω that is a superset of the strict
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partial order #. We call this a linear extension of # and we denote the set of
all linear extensions of # by τ(#). For example, we obtain three linear exten-
sions >2,1, >2,2, >2,3 for the preferences #2 on the vacation region (cf. Figure 4).
We are now able to transform the optimization problem for partial orders into
alternative optimization problems on total orders since the following property
holds:

Max (〈z,#〉)(C) ≡
∨

>∈τ()

Max (〈z, >〉)(C) (5)

We can combine the solved forms of the alternative optimization problems into
the solved form for the problem Max (〈z,#〉)(C). Furthermore, we can define
explanations of optimality for this problem as follows. Consider a solution σ
of the problem Max (p)(C) with partial preferences p := 〈z,#〉. If > is a linear
extension of #, q := 〈z, >〉 and σ is a solution of Max (q)(C), then an explanation
of the Max (q)-optimality of σ is also an explanation of the Max (p)-optimality of
σ. Due to (5), such a linear extension > exists for each solution σ of Max (p)(C).

In the example Max (〈z2,#2〉)(C′), the linear extension >2,1 prefers Florida to
the French Riviera and thus allows us to explain the optimality of Florida. The
other two linear extensions, namely >2,2, >2,3, prefer French Riviera to Florida.
Any of them can be used in an explanation of the optimality of the French
Riviera. An example is:

ξ := (〈z2, >2,2〉, FrenchRiviera, {x2 �= Honolulu, x2 �= LosAngeles})

Given this explanation, the user can ask why the other regions have not been
selected. The options Hawaii and California are defeated by the constraints {x2 �=
Honolulu, x2 �= LosAngeles}. The option Mexico has been discarded since the
chosen option French Riviera is preferred to Mexico. And the option Florida
has been discarded since the linear extension >2,2 prefers the French Riviera to
Florida. The user can criticize this response by adding the preference Florida #′

2

FrenchRiviera. This will eliminate the solutions for the French Riviera.
The linear extensions of the user preferences are an important part of the

explanation as they give hints to the user how to eliminate undesired solutions.
As several linear extensions may support the same solution, it is not necessary
to enumerate a factorial number of linear extensions when computing the set of
all optimal outcomes [7].

3.3 Lexicographical Approach

User preferences do not concern a single criterion, but multiple criteria. We
therefore consider the preferences p1, . . . , pn on n criteria. We suppose that pi

has the form 〈zi,#i〉. Each preference gives rise to an optimization operator
Max (pi). If the conjunction

∧
i Max (pi)(C) has a solution, then the preferences

are not in conflict and we obtain ideal solutions. Otherwise, we need to find a
trade-off between the preferences. The easiest way is to introduce an importance
order on the preferences and to decide trade-offs in favour of the more important
preferences. Lexicographic optimization defines an ordering on the solution space
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based on this importance principle. Consider two assignments σ1 and σ2. We
consider the tuples of values that both assignments assign to the criteria and
define a lexicographical order #lex between them. The relation

(z1(σ1), . . . , zn(σ1)) #lex (z1(σ2), . . . , zn(σ2)) (6)

holds iff there exists a k such that zk(σ1) #k zk(σ2) and zi(σ1) = zi(σ2) for
i = 1, . . . , k − 1. A solution σ of C is a lexicographically optimal solution of C iff
there is no other solution σ∗ of C such that (z1(σ∗), . . . , zn(σ∗)) is lexicographi-
cally better than (z1(σ), . . . , zn(σ)). We introduce the lexicographic optimization
operator Lex (p1, . . . , pn) that maps a constraint C to a new constraint C′ that
is satisfied by the lexicographically optimal solutions of C.

Similar to (5), we can transform the problem Lex(p1, . . . , pn)(C) into a solved
form by considering a linear extension for each strict partial order #i. We define
τ(〈zi,#i〉) as the set of all preferences 〈zi, >i〉 for which >i is a linear extension
of #i. Furthermore, we define τ(p1, . . . , pn) as the Cartesian product τ(p1) ×
. . .× τ(pn). The following equivalence holds between lexicographic optimization
problems with partial preferences and the problems obtained by linearizing these
preferences:

Lex(p1, . . . , pn)(C) ≡
∨

(q1,...,qn)∈τ(p1,...,pn)

Lex (q1, . . . , qn)(C) (7)

A lexicographic optimization problem Lex (q1, . . . , qn)(C) with total preferences
can then be transformed to a sequence of single-criterion optimization problems
which can be solved by a standard optimizer:

Lex(q1)(C) ≡ Max (q1)(C)
Lex (q1, . . . , qn)(C) ≡ Lex(q2, . . . , qn)(Max (q1)(C)) (8)

The solved form has the form C∧z = ω∗
1∧. . . z = ω∗

n. In the vacation example, the
problem Lex(〈z1,#1〉, 〈z2,#2〉,minimize(z3))(C) has the solved form C ∧ z1 =
CliffDiving ∧ z2 = Mexico ∧ z3 = 60.

Explanations for lexicographical optimality are sequences of explanations
for single-criterion optimization problems. Consider a solution σ of the prob-
lem Lex (p1, . . . , pn)(C). A sequence (ξ1, . . . , ξn) is called an explanation of
the Lex (p1, . . . , pn)-optimality of σ iff there exist totally ordered preferences
(q1, . . . , qn) ∈ τ(p1, . . . , pn) such that ξi is an explanation of Max (qi)-optimality
of the i-th optimization problem Max (qi)(C ∧ z1 = z1(σ)∧ . . .∧ zi−1 = zi−1(σ))
and σ is a solution of this problem. Explanations of Lex(p1, . . . , pn)-optimality
always exist and can easily be produced when solving the problem.

Consider a solution σ1 of the vacation configuration problem Lex (〈z1,#1

〉, 〈z2,#2〉,minimize(z3))(C). An explanation of optimality is (ξ1, ξ2, ξ3) where

ξ1 := (〈z1, >1,1〉, CliffDiving, {})
ξ2 := (〈z2, >2,1〉, Mexico, {c1, z1 = CliffDiving})
ξ3 := (〈z3, <〉, 60, {c2, z2 = Mexico})
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We can depict this explanation in a graphical form. Each triple ξi is represented
by a node. There is an edge from ξi to ξj if the defeaters of zj contain a con-
straint of the form zi = ωi meaning that the optimal value for zi helped to defeat
the better values for zj. Figure 7 shows the explanation of the lexicographical
optimality of σ1 in graphical form. The edge between the nodes ξ1 and ξ2 in-
dicates that the two criteria z1 and z2 are in conflict and that the conflict has
been resolved in favour of the more important criteria, namely the activity z1.

3.4 Alternative Sequentializations

Whereas lexicographical optimization is one of the fundamental approaches of
multi-criteria optimization, few attention has been paid to the choice of the
importance ordering. In the vacation example, is it more important to minimize
the price than to maximize the quality? Or is it more important to maximize the
quality than to minimize the price? It may be worth to compute both of those
‘extreme solutions’ before before exploring compromises. This is reasonable if
there is a small number of criteria having the same importance.

We characterize each family of extreme solutions by a permutation π of the n
preferences (p1, . . . , pn). Given such a permutation, we optimize the criteria in
the ordering pπ1 , . . . , pπn . Let Π be the set of all those permutations. We intro-
duce a new operator, called Permute(p1, . . . , pn)(C), that maps the constraint C
to a constraint C′ that is satisfied by all extreme solutions of C. This constraint
is equivalent to a disjunction of lexicographic optimization problems:

Permute(p1, . . . , pn)(C) ≡
∨

π∈Π

Lex(pπ1 , . . . , pπn)(C) (9)

As explanations of the different lexicographic optimization problems preserve
the ordering of the criteria, it is straightforward to combine the explanations of
those problems. Consider a solution σ of the problem Permute(p1, . . . , pn)(C). If
π is a permutation such that σ is solution of Lex(pπ1 , . . . , pπn)(C), then an expla-
nation (ξπ1 , . . . , ξπn) of the Lex(pπ1 , . . . , pπn)-optimality of σ is an explanation
of the Permute(p1, . . . , pn)-optimality of σ.

The vacation example Permute(〈z1,#1〉, 〈z2,#2〉,minimize(z3))(C) has three
extreme solutions that are justified by different importance orderings. Solution σ1

chooses cliff diving in Mexico with hotel costs of $60 based on the order z1, z2, z3.
Solution σ2 proposes wind-surfing in Hawaii with hotel costs of $100 by following
the order z2, z1, z3. Solution σ3 offers wind-surfing in Florida with hotel costs of
$40 based on the order z3, z2, z1. Figure 5 displays the possible combinations of
the criteria values (in a way that is similar to the micro-structure of constraint
networks). The three extreme solutions are represented by thick lines. As an
example of an explanation, we give one for the optimality of the last solution:

((〈z3, <〉, 40, {}),
(〈z2, >2,1〉, Florida, {c2, z3 = 40}),
(〈z1, >1,1〉, WindSurfing, {c1, z2 = Florida}))

This explanation exhibits the importance ordering of the criteria and thus ex-
plains how conflicts between preferences are resolved.
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3.5 Importance Preferences

Thanks to the explanations, the user can inspect the conflicts between criteria
and the way they have been resolved. If the user is not satisfied with such
a conflict resolution, she can change it by reordering the criteria. For example,
suppose that the user is not satisfied with a vacation package at a high price. The
user now learns that this high price is caused by a very good quality rating, which
was chosen to be more important. The user wants to give price minimization a
higher importance than quality maximization and thus expresses an importance
ordering between the price criterion z3 and the quality criterion z4. We formalize
this importance ordering in terms of a strict partial order I ⊆ Z × Z on the
criteria set Z := {z1, . . . , zn}. In our example, we have

I := {(z3, z4)} (10)

We now use this importance ordering to restrict the set of extreme solutions.
We consider only those permutations π of the preferences p1, . . . , pn that respect
the importance ordering. More important criteria need to be ranked first. Hence,
the permutation π respects the importance ordering I iff the following property
holds for all i, j:

(zπi , zπj) ∈ I implies i < j (11)

Let Π(I) be the set of all permutations π that respect I. Furthermore, we in-
troduce a variant of the permute-operator Permute(p1, . . . , pn : I)(C) which is
restricted to those extreme solutions that are obtained by the permutations in
Π(I):

Permute(p1, . . . , pn : I)(C) ≡
∨

π∈Π(I)

Lex(pπ1 , . . . , pπn)(C) (12)

Preferences between criteria may eliminate extreme solutions, but do not add
new ones:

I⊆I∗ implies Permute(p1, . . . , pn : I∗)(C) ⇒ Permute(p1, . . . , pn : I)(C) (13)
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CliffDiving
〈z1, >1,2〉

Mexico
〈z2, >2,1〉

$60
〈z3, <〉

Fig. 7. Explanation of lexicographic
optimality of σ1

Hawaii

WindSurfing

$100

〈z2, >2,1〉

〈z3, <〉

〈z1, >1,2〉

Fig. 8. Explanation of lexicographic
optimality of σ2

The importance ordering I also impacts explanations. Consider the solution
σ of the problem Permute(p1, . . . , pn : I)(C). If π is a permutation in Π(I) and
σ is a solution of Lex(pπ1 , . . . , pπn)(C), then an explanation (ξπ1 , . . . , ξπn) of the
Lex(pπ1 , . . . , pπn)-optimality of σ is an explanation of the Permute(p1, . . . , pn :
I)-optimality of σ.

We now discuss the effect of importance preferences on the vacation example.
Suppose that solution σ3 has been submitted to the user. This solution proposes
wind-surfing in Florida with hotel costs of $40 based on the ordering z3, z2, z1.
The user criticizes this explanation by stating that the choices of the vacation
activity z1 and of the vacation region z2 are more important than the price z3.
The importance preferences I1 := {(z1, z3), (z2, z3)} are added to the preference
model. As the order z3, z2, z1 does not respect these importance preferences,
solution σ3 is no longer proposed. Solutions σ1 and σ2 have importance orderings
that represct I1. Figures 7 and 8 give explanations of optimality of these teo
solutions of the problem Permute(〈z1,#1〉, 〈z2,#2〉,minimize(z3) : I1)(C).

3.6 Trade-Offs and Preference Limits

Extreme solutions are resolving conflicts between preferences completely in
favour of the more important criteria. If two criteria z1 and z2 are in conflict,
then z1 gets its best value, while z2 is completely penalized. Changing the order
completely turns the balance around and the conflict is decided in favour of z2

while penalizing z1. However, it is also possible to use compromises and to trade
a small improvement for z2 against a small penalization of z1 without changing
the order of the criteria. Pareto-optimality captures all the possible trade-offs.

The notion of Pareto-optimality does not impose any importance ordering
on the criteria. It extends the partial ordering on the different criteria to a
partial ordering on the complete criteria space without making any particular
assumption. An assignment σ∗ Pareto-dominates another assignment σ iff 1. σ∗

and σ differ on at least one criterion zk (i.e. zk(σ∗) �= zk(σ)) and 2. σ∗ is strictly
better than σ on all criteria on which they differ (i.e. zi(σ∗) �= zi(σ) implies
zk(σ∗) #k zk(σ)). An equivalent definition consists in saying that σ∗ dominates
σ iff σ∗ is at least as as good as σ on all criteria (i.e. zk(σ∗) %k zk(σ)) and there
is at least one criterion where σ∗ is strictly better than σ (i.e. zk(σ∗) #k zk(σ)).
Pareto-dominance defines a strict partial order on the criteria space.
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A solution σ of C is a Pareto-optimal solution of C iff there is no other solution
σ∗ that Pareto-dominates σ. We introduce an operator Pareto(p1, . . . , pn) that
maps a constraint C to a new constraint C′ that is only satisfied by the Pareto-
optimal solutions of C. Non-Pareto-optimal solutions clearly are not desirable
since there are solutions that are better on one or more criteria while keeping
the other criteria unchanged.

Figure 5 shows a Pareto-optimal solution for the vacation example which is not
an extreme solution. This solution, which we name σ4, proposes sea park visits
in California with hotel costs of $60. Hence, σ4 does not choose the best value
for any criteria, but it is Pareto-optimal since we cannot improve any criterion
without getting a worse value for another criterion. Figure 6 shows the trade-off
between the vacation activity z1 and the vacation region z2. The solution σ4 is
situated between the two extreme solutions σ1 and σ2.

As for lexicographical optimization, we can linearize the partially ordered
preferences and transform a Pareto-optimization problem into a disjunction of
Pareto-optimization problems with totally ordered preferences:

Pareto(p1, . . . , pn)(C) ≡
∨

(q1,...,qn)∈τ(p1,...,pn)

Pareto(q1, . . . , qn)(C) (14)

However, there is no direct way to transform a Pareto-optimization problem into
a solved form even if it is based on totally ordered preferences. One approach
to solve those problems consists in generalizing optimization methods such as
Branch-and-Bound search to a partial order. The approach is pursued in [4].
Branch-and-bound search for a partial order needs to maintain a whole Pareto-
optimal frontier which might become rather inefficient. More importantly, this
method does not produce explanations of optimality that exhibit the trade-
offs between criteria. For this reason, we do not follow this approach, but seek
ways to solve Pareto-optimization problems by alternative sequences of classical
optimization steps. We observe that all extreme solutions are Pareto-optimal
(see [5]):

Permute(p1, . . . , pn)(C) ⇒ Pareto(p1, . . . , pn)(C) (15)

Hence, we can start with extreme solutions when determining Pareto-optimal
solutions. An extreme solution is entirely characterized by an ordering of the
criteria (and of the user preferences). However, these orderings do not charac-
terize those compromises between two conflicting criteria where none of the two
criteria gets its best value. We need to insert additional steps into the sequence
of optimization problems. An extreme solution is always in favour for the most
important criterion and completely penalizes the less important ones. For ex-
ample, consider two conflicting preferences 〈z1,#1〉 and 〈z2,#2〉. Let σ be the
extreme solution for the ordering z1, z2. The criterion z1 gets its best feasible
value, namely z1(σ), whereas z2 is penalized and gets the value z2(σ). If we want
to obtain a better value for the less important criterion z2, then we need to limit
its penalization before optimizing the more important criterion z1. For this pur-
pose, we add the constraint z2 # z2(σ) before optimizing z1. If this constraint
is satisfiable, then the optimization of z1 will produce the best solution for z1
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under the constraint z2 # z2(σ). If such a penalization limit is infeasible, then
it should be retracted. To achieve this, we represent penalization limits of the
form z2 # z2(σ) as wishes.

We introduce a wish for each criterion and for each possible value of this
criterion:

limits(〈zi,#i〉) := 〈wish(zi %i ω1), . . . ,wish(zi %i ωn)〉 (16)

Furthermore, we consider the set I of importance preferences stating that wishes
for worse outcomes precede wishes for better outcomes:

I := {(wish(zi %i ω),wish(zi %i ω∗)) | ω∗ # ω, i = 1, . . . , n} (17)

It is a common modelling technique in Operations Research to transform an
integer variable into a set of binary variables. Hence, our transformation has
nothing unusual except that it is applied to the criteria and not to the decision
variables. The Pareto-optimal solutions of the original model then correspond
exactly to the extreme solutions of the binary model (cf. theorem 1 in [5]):

Pareto(p1, . . . , pn)(C) ≡ Permute(limits(p1), . . . , limits(pn) : I)(C) (18)

This correspondence allows us to transform Pareto-optimal solutions into a
solved form and to define explanations of optimality.

Interestingly, the original optimization steps of the form Max (〈zi #i〉)(C′)
have disappeared in this new characterization. If the result of this optimiza-
tion is ω′, then this step corresponds to the last successful wish on zi, namely
Max (wish(zi %i ω′))(C′). Each Pareto-optimal solution is thus characterized by
a sequence of wishes and there are multiple wishes for the same criterion zi.
There are logical dependencies between wishes that allow us to speed up the
solving process and to simplify the explanations. If wish(zi %i ω) fails, then all
wishes wish(zi %i ω′) for better outcomes ω′ # ω will also fail. Furthermore, if
wish(zi %i ω) succeeds and is directly preceded by a wish for the same criterion
then it subsumes this previous wish and the previous wish can be removed from
explanations of optimality.

Explanations of Pareto-optimality are thus obtained by determining subse-
quences of explanations for lexicographical optimality of the binary preference
model. Let σ be a Pareto-optimal solution of Pareto(p1, . . . , pn)(C). Then σ is
an extreme solution of Permute(limits(p1), . . . , limits(pn) : I)(C) and there ex-
ists an explanation (ξ1, . . . , ξm) of optimality of this extreme solution. Let ξj be
(〈wish(z′j % ω′

j), >〉, vj , Xj). We say that ξj is relevant iff the wish is successful
(i.e. vj = 1) and the next triple concerns a different criterion (i.e. z′j+1 �= z′j).
An explanation of Pareto-optimality of σ is the sequence (ξj1 , . . . , ξjk

) of the
relevant triples from (ξ1, . . . , ξn) in the original order, i.e. j1 < j2 < . . . < jk.
These explanations can still contain multiple wishes for the same criterion. The
last wish for the criterion in an explanation determines the value of the criterion.
The other wishes limit the penalization of the criterion before optimizing other
criteria. Hence, the explanation highlights the critical choices that need to be
made in order to obtain the Pareto-optimal solution σ.
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The solving algorithm for Pareto-optimal solutions in [5] is based on wishes
and is easily able to provide these explanations of optimality.

We give an explanation for the Pareto-optimal solutions σ1 and σ4 of the
vacation example. The explanation for σ1 consists of one wish for each criterion.
Each of these wishes assigns the optimal value.

((wish(z1 %1 CliffDiving), 1, {}),
(wish(z2 %2 Mexico), 1, {c1, z1 %1 CliffDiving}),
(wish(z3 ≤ 60), 1, {c2, z2 %2 Mexico}))

When this explanation is presented to the user, she might criticize it by saying
that the vacation region has been penalized too much by its defeater, which is
the wish w1 := wish(z1 %1 Cliffdiving). The user therefore adds a wish w2 :=
wish(z2 %2 FrenchRiviera) to limit this penalization. This wish needs to get
higher importance than w1 to be effective in all cases. The user therefore adds
the importance statement (w2, w1) as well. This leads to a new solution, namely
σ4 and the following explanation:

((wish(z2 %2 FrenchRiviera), 1, {}),
(wish(z1 %1 SeaPark), 1, {c1, z2 %2 FrenchRiviera}),
(wish(z2 %2 California), 1, {c1, z1 %1 SeaPark}),
(wish(z3 ≤ 60), 1, {c2, z2 %2 California}))

Explanations for Pareto-optimal, which consist of sequences of successful wishes,
thus offer new ways to the user to explore the space of Pareto-optimal solutions.

4 Conclusion

We have shown that combinatorial optimization can directly use the original
user preferences even if those preferences are incomplete. The solving process
considers different ways to complete these preferences and optimizes a single
criterion at a time, while exploring different importance orderings of the crite-
ria. In doing so, the whole optimization process not only results in an optimal
solution, but also produces an explanation of optimality of the solution. Such
an explanation indicates the conflicts between preferences and shows how they
have been resolved. The user can examine this explanation and either accept the
solution or refine the preference model. The refined preferences will eliminate the
undesired explanation. The problem solver may then find another explanation
for the same solution or another solution and the procedure is repeated.

As explanations are comprehensible and are formulated in the same “lan-
guage” as the optimization problem, the user can react to all elements of the
explanation and change the problem statement. For example, the user can relax
constraints, refine preferences, add importance statements between preferences,
or limit the penalization of the less important criteria. Thanks to the expla-
nations, the problem solver behaviour becomes completely transparent to the
user and the user gains full control over the problem solver. We thus obtain an
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interactive problem solving process that consists of optimization, explanation,
and preference elicitation. This offers new possibilities over a traditional MAUT
approach which aggregates all preferences into a utility function. The MAUT
approach is convenient for MIP optimizers, but not for producing explanations
of optimality in terms of the original preferences, which help to make solutions
understandable for the end users.

The approach can be extended to conditional preferences [1]. Algorithms for
computing the optimal solutions can be found in [5,7].
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Abstract. Global constraints are used in constraint programming to help users
specify patterns that occur frequently in the real world. In addition, global con-
straints facilitate the use of efficient constraint propagation algorithms for prob-
lem solving. Many of the most common global constraints used in constraint
programming use filtering algorithms based on network flow theory. We show
how we can formulate global constraints such as GCC, Among, and their com-
binations, in terms of a tractable set-intersection problem called Two Families
Of Sets (TFOS). We demonstrate that the TFOS problem allows us to represent
tasks that are often difficult to model in terms of a classical constraint satisfaction
paradigm. In the final part of the paper we specify some tractable and intractable
extensions of the TFOS problem. The contribution of this paper is the charac-
terisation of a general framework that helps us to study the tractability of global
constraints that rely on filtering algorithms based on network flow theory.

1 Introduction

Global constraints are used in constraint programming to help users specify patterns
that occur frequently in the real world (see, for example, [8,9,10,11,12,13]). In addi-
tion, global constraints facilitate the use of efficient constraint propagation algorithms
for problem-solving. Many of the most common global constraints used in constraint
programming employ filtering algorithms based on network flow theory. Examples are
the Global Cardinality Constraint (GCC) [11], and the Among Constraint [3], which
generalize a number of other global constraints such as NotAllEqual, Max, and Mem-
ber constraints.

A real-life problem usually needs combinations of global constraints, rather than a
single constraint. Some of these combinations may be efficiently solved, but generally
they are intractable [13]. A question that arises in this context is to describe a tractable
problem that can represent various combinations of network flow-based global con-
straints. This question is addressed in this paper. In particular, our contributions are as
follows.

1. We define a model that includes a ground set V and two families F1 and F2 of
subsets of V . Any two elements of each family are either disjoint or contained
one in the other. Each subset of V contained in these families is associated with
two nonnegative integers called minimal and maximal cardinalities. We refer to the
model as TFOS, which is an acronym for Two Families Of Sets.
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2. Given a TFOS model (V, F1, F2) we say that a subset of V is valid if the size of
its intersection with each set contained in F1 or F2 lies between the cardinalities
assigned to that set. We define a TFOS problem as finding the largest valid subset
of V and study the tractability of the problem.

3. We show that GCC and Among constraints, as well as (some of) their combina-
tions considered in [13], can be represented by the TFOS model. In the proposed
representation, V is the set of all values of the CSP being considered, F1 is the fam-
ily of all domains, F2 represents the global constraints. By introducing additional
sets to F1, we demonstrate that it is possible to represent as a TFOS problem some
optimization tasks that seem difficult to express as a classical CSP.

4. We propose a propagation algorithm that can be used to speed up search in cases
where part of some intractable problem is presented as a TFOS problem. The prop-
agation algorithm is based on the approach suggested in [11].

5. We discuss possible extensions of the TFOS model. In particular we show tractabil-
ity of the weighted TFOS problem. Then we prove that introducing an additional
family of sets of V with the same properties as the families of the TFOS model
makes the resulting problem NP-hard. Finally, we show that we can preserve poly-
nomial solvability by restricting the properties of the third family.

Several other approaches to the design of generalized global constraints are described
in [2,4,13]. The work reported in [13] is most closely related to our approach: it proves
the tractability of two types of combinations of GCC and Among constraints. How-
ever, the TFOS model is more general because, as we show further in this paper, it
can express the combinations of constraints considered in [13] as well as a number
of additional combinations of constraints that seem hard to express by that approach.
The authors of [2] propose a method to design tractable logical combinations of some
primitive constraints. However, their method is unable to express some basic network
flow-based global constraints such as Among. The approach described in [4] has an em-
phasis different from ours: it aims at the design of a unifying language for expressing
global constraints, but this language does not necessarily enforce tractability.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 defines the TFOS problem and proves its tractability. Section 4 de-
scribes possible applications of the proposed model. Section 5 provides a scheme for
developing a propagation algorithm for TFOS. Section 6 discusses possible extensions
of the model. The implications of the TFOS model on the modelling process are dis-
cussed in Section 7. A number of concluding remarks are made in Section 8.

2 Background

Given a directed graph G = (V, E) with two specified nodes s and t called source and
sink, a flow in G is a function from the set of arcs E(G) to the set of non-negative
integers1 that satisfies the following conditions: for each vertex v except s and t, the
amount of flow entering v equals the amount of the flow leaving v, the amount of the
flow entering s as well as the amount of flow leaving t is 0.

1 Generally, a flow does not have to be integral but this restriction is sufficient here.
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The maximum flow problem, in its simplest formulation, associates non-negative
integer capacities with each edge of G and asks for the maximum flow from s to t such
that the flow delivered through each edge does not exceed its capacity. The problem
can be solved by picking an initial flow and augmenting it iteratively by finding a path
from s to t in the residual graph obtained from G by removing some edges and adding
“opposites” to other edges (see [1], Sections 6.3 and 6.4 for a detailed description). The
time required by each iteration is proportional to the sum of the number of vertices
and edges of G. The flow, due to its integrality, is augmented by at least one at each
iteration. Hence, the resulting complexity is the complexity of one iteration multiplied
by the maximum flow. Polynomial-time algorithms for the maximum flow are well-
known [1].

The constraint satisfaction problem (CSP) is defined on a set of variables V AR =
{var1, . . . , varn} and a set values V AL = {val1, . . . , valm}. Each variable has a
domain, which is a subset of V AL. The objective is to assign each variable with exactly
one value from its domain subject to certain constraints. A constraint specifies a subset
S of variables and restricts tuples of values allowed to be assigned to the variables of S.
The set S is called the scope of the constraint. The scope of a global constraint may be
of an arbitrary size, even including all the variables. In this paper we consider two types
of global constraints: the Global Cardinality Constraint (GCC) [11] and the Among
constraint [3]. The former constraint specifies for each value of V AL its minimal and
maximal number of occurrences in a solution of the given CSP. The latter constraint
specifies for a subset T of V AL the minimal and maximal number of occurrences of
values of T in a solution of the given CSP.

The CSP is intractable in general but there have been many tractable classes studied
(see, for example, [6]). In particular, a CSP constrained by a single GCC or a single
Among constraint is tractable because it can be transformed into a network flow prob-
lem [13].

3 The TFOS Model

Let V be a set of vertices. Let F1 and F2 be two families of nonempty subsets of V
such that any two sets that belong to the same collection are either disjoint or contained
one in the other. The intersection between sets from different families may be arbitrary.
Each set Y ∈ F1 ∪ F2 is associated with two non-negative numbers called minimal
and maximal cardinalities that do not exceed |Y |. We refer to the model (V, F1, F2) as
TFOS, which is an abbreviation of Two Families Of Sets. Let X be a subset of V such
that for each element Y of F1 or F2, the size of X ∩ Y lies between the cardinalities
associated with Y 2. We call X a valid subset of V . The task of the TFOS problem is to
find the largest valid subset of V . Consider the following example of application of the
proposed model.

Example 1. Consider a scheduling problem with sets J and E of jobs and employees,
respectively. Each job is specified by a subset of employees who can perform this job.

2 If Y ∈ F1 ∩ F2 and, consequently, Y is associated with two distinct pairs of cardinalities, one
for F1, the other for F2, this condition should be satisfied for both pairs of cardinalities.
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(a) An example problem. (b) The corresponding TFOS model.

Fig. 1. An illustration of Example 1

Each employee is specified with the minimum and the maximum number of jobs to
be performed. The task is to assign each job with exactly one employee so that no
employee violates her (or his) restriction of the minimal and maximal allowed number
of jobs.

In Figure 1 we have three jobs and three employes. Figure 1(a) shows which job can
be performed by which employee: the vertex denoting a job is adjacent to the vertices
denoting the employees that can perform this job. The corresponding families of sets
are shown in Figure 1(b). In particular, one family of sets denotes sets V1, V2, V3, each
of them includes Job/Employee pairs with the same first element. The second family of
sets includes sets U1, U2, and U3 which unite the pairs according to the same second
element.

More formally, let (V, F1, F2) be a TFOS model such that V is the set of all pairs
(Ji, Ek) where Ek is an employee who can perform job Ji. Assume that there are n
jobs and m employees. Then F1 contains n subsets of V and the i-th subset contains all
pairs with the first element Ji. The cardinalities for each set of F1 are both 1, expressing
the requirement that exactly one employee is to be assigned to a job. The family F2

contains m subsets of V with the k-th subset containing all pairs having Ek as the
second element. The cardinalities of the subset corresponding to employee Ek are the
minimal and the maximal number of jobs allowed to Ek. It is not hard to observe that
any feasible solution of the specified TFOS problem represents a valid assignment of
jobs to employees. Observe that the resulting TFOS model is equivalent to a CSP with a
GCC constraint, where F1 represent domains of variables and F2 represent cardinality
constraints assigned to values. �

Now we prove the tractability of the TFOS problem. Given a TFOS model (V, F1, F2),
we assume that both F1 and F2 cover all vertices of V . If, for example, the set V \

⋃
F1

is not empty, we can add it to F1 accompanied with cardinalities 0 and |V \
⋃

F1|.
Clearly, the resulting TFOS problem is equivalent to the original one.
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Let F1 = {S1, . . . , Sm}, F2 = {T1, . . . , Tk}. We define the graph G(F1, F2) as
follows. The vertices of the graph are s, t, s1, . . . , sm, t1, . . . , tk, where si and ti corre-
spond to the respective sets, s and t are the source and the sink of the flow. There is an
edge (s, si), for every Si which is maximal in F1 and an edge (ti, t) for every Ti which
is maximal in F2. There is an edge (si, sj) whenever Sj is a maximal subset of Si and
an edge (tj , ti) whenever Tj is a maximal subset of Ti. Finally, let V (Si, Tj) ⊆ Si ∩Tj

be the set of all u such that Si and Tj are minimal in their families subject to containing
u. There is an edge (si, tj) whenever V (Si, Tj) is not empty.

Observation 1. We make the following observations.

1. G(F1, F2) has exactly one edge entering any si and exactly one edge leaving any
ti.

2. G(F1, F2) has O(|V |) vertices and O(|V |) edges.

Proof. See Appendix A.

Now we associate with each edge of G(F1, F2) its minimal and maximal capacities.
The edge entering any si or leaving any tj is associated with the respective minimal
and maximal cardinalities of the corresponding set. Finally, the minimal capacity of
any edge between si and tj is 0, the maximal capacity is |V (Si, Tj)|.

We will prove that the size of the largest valid subset of V equals the amount of the
maximal flow that can be delivered from s to t in G(F1, F2). The proof is divided into
two lemmas (see Appendix A). In the first one we show that for any valid X ⊆ V , there
is a flow of size |X |. The other lemma shows that for any flow from s to t there is a
valid set X whose size equals the amount of the delivered flow. Combining these two
lemmas together yields the desired result.

Theorem 1. Given a TFOS model (V, F1, F2), the problem of finding the largest valid
subset of V can be solved in O(|V |2). (In some cases there may be no valid subset at
all. In this case, a network flow algorithm reports the absence of feasible flow.)

Proof. The maximum flow in graph G(F1, F2) is at most |V |, and all the capacities are
integral. Consequently, a traditional iterative approach to solving the maximum flow
problem with maximal and minimal capacities (see [1], Section 6.7) solves the problem
in O(|V |) iterations. The complexity of each iteration is proportional to the sum of
the number of vertices and the number of edges of G(F1, F2), which is O(|V |) from
Observation 1. �
An illustration of an application of Theorem 1 is presented in Figure 2. In this figure
we have a binary CSP: ellipses represent variables, black circles represent the values,
and the edges represent the binary conflicts. In this particular example all the conflicts
form cliques. So, we can introduce two families of sets {V1, V2, V3, V4} where for each
family at least one value has to be selected and the family {U1, . . . , U5} of cliques
where at most one value can be selected. According to Theorem 1, this CSP can be
solved in polynomial time.

Remark. If a TFOS model represents a CSP with n variables and the maximum domain
size d then V corresponds to the set of all values of the CSP and has size O(nd); the
maximum flow corresponds to a solution of the CSP which has size n. Hence the flow
algorithm takes O(n2d).
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Fig. 2. An illustration of an application of Theorem 1

4 Applications

This section shows that the GCC and the Among constraints, as well as (some of)
their combinations, can be represented by the TFOS model. Moreover, it shows how
to represent some optimization tasks as a TFOS problem that are hard to express using
the classical CSP paradigm.

4.1 GCC and Value-Disjoint among Constraints

Consider the scheduling problem described in Example 1. We specify additional re-
quirements for this problem. Assume that the employees are partitioned according to
their professions, based on the minimal and the maximal number of jobs allowed to
be performed by persons of each profession. It is not hard to update the TFOS model
shown in Example 1 so that it expresses the new requirement. For each profession P ,
add to F2 a set that includes all pairs (Ji, Ek) such that Ek has profession P . Set the
minimal and maximal cardinalities of that set equal to the minimal and maximal number
of jobs, respectively, allowed to fellows of profession P .

It can be shown that this TFOS model is equivalent to a CSP with a combination of
GCC and value-disjoint Among constraints [13]. In particular, the value-disjoint Among
constraints are represented by the new sets added to F2. The domains of variables and
the cardinality constraints are represented as shown in Example 1.

The resulting TFOS model can be further updated to express new requirements. For
example, imagine that the jobs specified in our example scheduling problem span some
period of time, say, a week, i.e. the existing constraints restrict the number of jobs
in a week. In addition we can restrict the number of jobs performed by each particular
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person in a day. Let P1, . . . , P7 be the partition of jobs according to the day they are to
be performed. For each employee Ek, we add to F2 seven new subsets, the j-th subset
contains all elements (Ji, Ek) where Ji is a job of Pj that can be performed by Ek. The
cardinalities of j-th subset are the minimal and the maximal number of jobs allowed for
Ek on j-th day. Observe that the new elements of F2 preserve the property of the TFOS
model.

4.2 GCC and Variable-Disjoint among Constraints

In the scheduling problem presented in Example 1, assume that only a subset F ⊆ E
of employees is constrained by restricting the minimal and maximal number of jobs.
Assume, as in the previous subsection, that the jobs of J span a time period of a week
and we constrain the number of jobs performed by all the employees in a day. That
is, we add seven new restrictions to the example problem that specify the minimal and
the maximal number of jobs performed by the employees of F in each of the seven
days of a week. These new restrictions can be represented as variable-disjoint Among
constraints. It can be shown that the resulting problem is equivalent to the combination
of GCC and Among constraints if the number of partition classes of J is not necessarily
seven, but an arbitrary integer.

The description of the obtained scheduling problem in terms of the TFOS model
is not straightforward, because the sets corresponding to the variable-disjoint Among
constraints cannot be added to any of the families of sets defined in Example 1 without
violating the properties of these families. To obtain the description, observe that there
are three possible cases of the example scheduling problem. In the first case, for each
job there is an “unconstrained” employee that can perform this job. This case is trivial
because each job can be assigned to such an employee without violating any constraint.
In the second case, E = F , that is, there are no unconstrained employees at all. In this
case, partition the sets in F1 into seven classes according to the day the corresponding
jobs are assigned. The Among constraints can be expressed by unions of the sets that
belong to the same partition class. The cardinalities for each set are the minimal and the
maximal number of jobs allowed on the corresponding day. The sets corresponding to
Among constraints can be added to F1 because they do not violate the required property
that any two sets of F1 are either disjoint or contained one in the other.

In the last case of the example scheduling problem, unconstrained employees can
perform only a part of the required jobs but not all. In this case, the TFOS model is con-
structed in two stages. In the first stage, we take the TFOS model described in Example
1 and replace F1 by the “projection” of F1 to F . That is, we replace each set in F1 by a
subset that contains all the elements (Ji, Ek) such that Ek ∈ F . We associate the sets
that have lost some of their elements as a result of this replacement with cardinalities 0
and 1, the cardinalities of the other sets both remain 1. In the second stage the Among
constraints are introduced by analogy with the previous case. It can be shown that if
the resulting TFOS problem does not have a feasible solution, the example scheduling
problem does not have a solution either. Otherwise, take any valid set of the obtained
TFOS model and assign the jobs “unassigned” by this set to respective unconstrained
employees. The resulting assignment is a solution to the problem.
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4.3 Compact CSP Modeling

Consider again the scheduling problem and the corresponding TFOS model described
in Section 4.1. Recall that the sets of family F1 represent domains of the corresponding
CSP. A relative inflexibility of CSP as a modelling language is that each variable must
be assigned with exactly one value from its domain. In this subsection we demonstrate
that the TFOS model does not have this disadvantage. In particular we show that by
introducing a number of additional subsets into family F1 of the TFOS model being
considered, we can represent a scheduling problem that seems difficult to be expressed
in terms of classical CSP.

Recall that the scheduling problem described in Section 4.1 assigns exactly one em-
ployee to each job and that the set of all employees is partitioned according to their
profession. Assume that we would like to assign each job not with a single employee
but with a crew of employees with a specified minimal and maximal number of fel-
lows of each profession participating in the crew. To introduce these new constraints
into the TFOS model, we partition each set S of F1 according to the profession of the
employees with which the elements of S correspond. We associate each partition class
with the cardinalities equal to the minimal and the maximal number of fellows of the
corresponding profession allowed to be assigned to the job corresponding to S. Then
we add the resulting new sets to F1.

5 Towards a Propagation Algorithm for TFOS

In this section we present a Propagation Algorithm (PA) for the TFOS problem. The
input of the algorithm consists of a TFOS model (V, F1, F2) and an integer k. If there
is no valid subset of V of size at least k, the algorithm reports infeasibility. Otherwise,
it outputs the subset of V containing the elements that do not belong to any valid subset
of size at least k. Before presenting the PA itself, let us specify how it can be used to
speed up the search.

We assume that an optimization problem is formulated as finding a largest subset of
V subject to certain restrictions, a part of which are families F1 and F2 with their min-
imal and maximal cardinalities, and that the problem is solved by a systematic Search
Algorithm (SA). In every iteration, the SA possesses additional data: the size m of the
largest known subset of V satisfying all the restrictions and a subset V ′ of V . The SA
tries to extend V ′ to a size of at least m + 1. The PA decides whether the extension is
possible if the only restrictions considered are those imposed by families F1 and F2. If
yes, the PA specifies which elements of V \V ′ cannot participate in such a set. Clearly,
if the PA reports infeasibility, the SA must backtrack immediately. If a set of infeasible
elements is specified, the SA discards them in its attempt to extend V ′, thus pruning the
branches of the search tree. Note that the PA considers the TFOS model (V \V ′, F ′

1, F
′
2),

where the elements of F ′
1 and F ′

2 are obtained from F1 and F2, respectively, by appro-
priate restriction of their sets and updating cardinalities. In particular, a set S ∈ F1 is
transformed into a set S \ V ′ of F ′

1 with the cardinalities max(l(S) − |S ∩ V ′|, 0) and
u(S)− |S ∩ V ′|, where l(S) and u(S) are the cardinalities of S in F1. The transforma-
tion from F2 to F ′

2 is analogous. The minimal size of a valid subset “pursued” by the
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PA is m − |V ′| + 1. (If the problem being considered is a CSP, the minimal size of a
valid subset always equals to the number of unassigned variables.)

Given a TFOS model (V, F1, F2) and an integer k as input, the PA proceeds in two
stages. In the first stage, the feasibility of a valid subset of size k is checked. In particular,
the PA constructs a graph G′(F1, F2) obtained from G(F1, F2) by adding a new node
s′ and an additional edge (s′, s) of capacity k. Then the maximum flow from Y s′ to t
is computed. Clearly a valid subset of size k is feasible only if a flow of size k can be
delivered from s′ to t. If a valid set of the required size is found out to be feasible, the
algorithm goes on to the second stage: computing the subset of infeasible values of V .

Proposition 1. Let u be a value of V . Let F1(u) and F2(u) be the minimal elements of
F1 and F2 that contain u. Let e be an edge of G′(F1, F2) from the node corresponding
to F1(u) to the node corresponding to F2(u).3 There is a feasible subset X of V such
that |X | ≥ k and u ∈ X if and only if there is flow of size at least k from s′ to t and the
flow delivered through edge e is nonzero.

Thus, the set of the infeasible elements of V can be extracted in O(|V |) from the set
of infeasible edges of G′(F1, F2), i.e., the edges that are left “untouched” by any maxi-
mum flow from s′ to t. These edges can be found by an approach suggested in [11]. Ac-
cording to that approach we consider the residual graph GR obtained from G′(F1, F2)
by delivering flow Y . The graph GR is partitioned into strongly connected components.
The infeasible edges are those whose ends do not belong to the same component. Parti-
tioning into strongly connected components for GR can be done in O(|V |) applying an
algorithm by Tarjan (see, for example, [5]). Hence the complexity of the propagation
algorithm is determined by the time complexity of the maximum flow computation,
which is O(|V |2) by Theorem 1. Finally, note that the if the TFOS model being con-
sidered represents a CSP, the complexity of the PA, which, in terms of CSP, is called
achieving generalized arc-consistency, is O(n2d).

6 Extensions of the TFOS Model

6.1 The Weighted TFOS Problem

Given a TFOS model (V, F1, F2) and a weight function w associating each element of
V with a weight, the task of the weighted TFOS problem is to find the largest valid
subset of V having the smallest weight (the weight of a set is computed as the sum
of weights of its elements). By analogy with the unweighted TFOS problem, it can be
shown that the weighted TFOS problem generalizes various network flow-based global
constraints with costs [12].

Theorem 2. The weighted TFOS problem is tractable.

Proof. The weighted TFOS problem can be transformed into the problem of finding the
minimum cost flow ([1], Chapter 10) in a graph Gw(F1, F2) that can be obtained from

3 There is such an edge because u ∈ V (F1(u), F2(u)), hence V (F1(u), F2(u)) is not empty
and thus corresponds to an edge by construction of G(F1, F2).
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G(F1, F2) by introducing the following modifications. The edges entering the nodes
corresponding the elements of F1 or leaving the nodes corresponding to the elements
of F2 are associated with zero costs. Each edge between a node corresponding to a
set A ∈ F1 and a node corresponding to a set B ∈ F2 is split into |V (A, B)| edges
corresponding to elements of V (A, B). The edge corresponding to each element u ∈
V (A, B) is associated with cardinalities 0 and 1 and with cost w(u). The correctness of
the transformation can be proved in a way similar to that employed in Lemmas 1 and 2
(presented in the appendix). �

6.2 Three Families of Sets Cause NP-Hardness

If we allow more than two families with the property of families of a TFOS model, the
corresponding optimization problem can be shown to be NP-hard.

Theorem 3. An extension of the TFOS problem that includes three families of sets is
NP-hard.

Proof. The NP-hardness can be shown by the reduction from a version of 3-SAT where
each variable occurs at most one as a positive literal and and most twice as a negative
literal. This problem is well known to be NP-complete (see, for example, the classical
”Computational Complexity” book of Papadimitriou). Let F be a 3-CNF formula over
a set of variables v1, . . . vn such that each vi appears at most once and each ¬vi appears
at most twice. Let Z be a binary CSP with variables corresponding to the clauses of
F , the values of the domain of each variable correspond to the literals of the respective
clause, two values are incompatible if they correspond to the positive and the negative
literal of the same variable. It is not hard to see that Z is soluble if and only if F is
satisfiable.

Observe that Z has two types of conflicts. A conflict of the first type can be called
an isolated conflict. It involves a pair of values (val1, val2) which are incompatible but
no other value is incompatible with val1 nor with val2. A conflict of the second type
can be called a complex conflict. It involves a triple (val1, val2, val3) such that val1 is
incompatible with both val2 and val3 and no other value is incompatible with either of
val1, val2, val3.

We introduce the three families of sets structure (U, F1, F2, F3) as follows. The set
U includes all the domain values of Z (the values of different domains are consid-
ered distinct). F1 is the family of all domains. The set F2 is constructed as follows.
For each isolated conflict (val1, val2), the set {val1, val2} ∈ F2. For each complex
conflict (val1, val2, val3), the set {val1, val2)} belongs to F2. No other sets are con-
tained in F3. The set F3 contains only sets {val1, val3} for each complex conflict
(val1, val2, val3). It is not hard to observe that the sets within each family are pair-
wise disjoint. The associate the upper and lower bounds 1 with the sets of F1, upper
bound 1 and lower bound 0 are associated with the sets of F2 and F3.

Observe that (U, F1, F2, F3) has a valid set of size n = |F1| if and only Z is soluble.
Indeed, if Z is soluble then any solution of Z is a valid set of (U, F1, F2, F3) because it
has exactly one value within each domain (i.e. each set of F1) and contains no pairs of
conflicting values (i.e has at most one value within each set of F2 and F3). Conversely,
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any valid set has exactly one value in each domain and satisfies all the constraints of Z ,
hence it is a solution of Z . �

6.3 Preserving Tractability: Restrictions on the Third Family

Although the optimization problem based on three families of sets is NP-hard in general,
it could be solved efficiently if we restrict the properties of the third family. The follow-
ing example demonstrates this possibility. We define the three family of sets problem
(3FOS) as a four tuple (V, F1, F2, F3), where the first three components are the same
as in the TFOS model and F3 is a family {Y1, . . . Yl} of subsets of i such that Yi ⊂ Yj

whenever i > j. Assume that the minimal cardinalities associated with the elements of
F3 are all zeros. Let u1, . . . ul be the respective maximal cardinalities. We may assume
that ui < uj whenever i > j as if not, the cardinality constraint imposed by ui is
redundant.

Theorem 4. The 3FOS problem can be solved efficiently using an algorithm for the
weighted TFOS problem as a procedure.

Proof. We associate the elements with weights as follows. All elements of V \ Y1 are
associated with zero costs. All elements of Y1 \ Y2 are associated with some large pos-
itive weight W , say 1000. For i > 1, let K be the weight associated with the elements
of Yi−1 \ Yi. Then the elements of Yi \ Yi+1 (or Yi in case i = l) are associated with
weight K ∗ ui−1/ui. Observe that X ⊆ V violates the cardinality constraints imposed
by F3 if and only if the weight of X is greater then W ∗ u1. This observation suggests
the following way of solving the problem.

Solve the weighted TFOS problem (V, F1, F2) with the weights assigned as shown
below. If there is no feasible valid subset of V then the original problem has no feasible
valid subset either. If the resulting largest valid subset X has a weight smaller than or
equal to W ∗u1 then X is a solution of the original problem. Otherwise, we learn that the
original problem has no solution of size |X |. To introduce this additional constraint, we
add to F1 set V with cardinalities 0 and |X |−1. (If such a set already exists, we adjust its
maximum cardinality.) Then we solve the resultant weighted TFOS model again. This
process may be repeated a number of iterations. It stops if in some iteration a feasible
solution of weight at most W ∗ u1 is found or infeasibility is reported. Otherwise, the
maximal allowed cardinality of set V in family F1 is decreased by 1. Infeasibility is
reported if this maximal cardinality has been reduced to 0 with no feasible solution
found before. �
Although the described example is rather artificial, it it shows the existence of a non-trivial
polynomially solvable optimization problem based on more than two families of sets.

7 Modelling Intractable Problems Using the TFOS Model

In this section we demonstrate that the TFOS model can be useful for modelling in-
tractable problems. The main benefit of the TFOS model is that it allows us to model
intractable problems in a way that makes constraint propagation more efficient. An in-
tractable problem is usually modelled as a conjunction of global constraints [13,14].
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Each constraint in the conjunction is propagated separately in a number of iterations
until no value can be removed from the domains of the constrained variables. Hence,
the number of constraints in the conjunction has a multiplicative factor on the complex-
ity of the propagation algorithm and it is desirable that the number of such constraints
be as small as possible. We show now that there are hard problems that can be modelled
using a much smaller number of TFOS structures as compared to other types of global
constraints.

Consider, for example, the problem obtained at the end of Section 4.1. One can imagine
that this problem represents one shift of some timetabling problem that can occur in real
applications. A timetabling problem usually consists of a number of shifts with intersect-
ing sets of jobs associated with different shifts that make the problem hard [7]. It follows
from the description in Section 4.1 that such a hard timetabling problem can be modelled
using one TFOS structure per shift, while the number of GCC and Among constraints is
linear in the number of variables participating in a shift (a linear number of among con-
straints is needed, for instance, to represent constraints added at the end of Section 4.1).
Moreover, the separate propagation of the GCC and Among constraints cannot discard
all the values that might be discarded by the propagation of TFOS structures.

8 Conclusion

We have presented an optimization problem that we termed the TFOS problem. We
showed that various combinations of network flow-based global constraints can be ex-
pressed in terms of the TFOS problem. We also demonstrated that the TFOS model
can describe scenarios that seem difficult to express in terms of a classical CSP. We
presented global constraints in terms of a scheduling problem rather than an abstract
setting, which demonstrated that the TFOS model can be useful for modelling sophis-
ticated resource allocation tasks. We identified some tractable and intractable exten-
sions of the TFOS model. In particular, we showed that the weighted TFOS problem
is tractable and that with three families of sets, though intractable in general, it can be
made tractable by applying restrictions on the properties of the third family. Finally, we
discussed the implications of the TFOS model on the modelling process.

While this paper has raised a route for generalizing collections of flow-based global
constraints, much remains to be done. Firstly, it would be interesting to implement our
proposed framework and compare its efficiency against more standard approaches to
solving collections of flow-based global constraints. Secondly, while we have outlined a
propagation scheme for TFOS, a generic filtering algorithm must be developed in order
to make the approach more general. A possible direction of further theoretical research
is to identify other tractable generalizations of the TFOS problem and to design methods
for coping with intractability (such as approximation or parameterized algorithms) for
intractable extensions of the TFOS problem.
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12. Régin, J.-C.: Arc consistency for global cardinality constraints with costs. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 390–404. Springer, Heidelberg (1999)
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A Intermediate Proofs from Observation 1 to Theorem 1

Observation 1. We make the following observations.

1. G(F1, F2) has exactly one edge entering any si and exactly one edge leaving any
ti.

2. G(F1, F2) has O(|V |) vertices and O(|V |) edges.

Proof. Each observation is proven separately.

1. If Si is maximal then (s, si) is the only edge that enters si. If Si is not maximal,
assume that there are two sets Sj and Sf such that Si is a maximal subset of both
of them. From the structure of F1, either Sf ⊆ Sj or Sj ⊆ Sf . The former case
contradicts Si being the maximal set contained in Sj . In the latter case, there is the
same contradiction regarding Si and Sf . The proof for ti is symmetric.

2. The statement regarding the number of vertices easily follows from the observation
that the number of sets in F1 as well as in F2 is at most 2∗|V |−1. This observation
can be proven by induction on |V |. It is immediate if |V | = 1. For |V | > 1, F1 may
contain (in the worst case) V itself and a partition of V into n, (n ≥ 2) subsets of
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sizes y1, . . . yn. By the induction hypothesis, i-th partition class together with all
its subset sum up to at most 2 ∗ yi − 1. Summing these numbers together we get
2 ∗ |V | − n subsets that together with V itself are at most 2 ∗ |V | − 1 subsets.
To prove the upper bound on the number of edges, observe that there is at most one
edge entering a node corresponding to an element of F1 and at most one edge leav-
ing a node corresponding to an element of F2. It follows that we need to check only
the number of edges connecting the nodes corresponding to elements of different
families. To this point note that each of these edges corresponds to a non-empty
subset of V and that the subsets associated with different edges do not intersect. �

Lemma 1. Let X be a valid subset of V . Then there is a flow of size |X | from s to t.

Proof. We construct the flow as follows. Associate every edge (si, tj) with the flow
|X∩V (Si, Tj)|. Having associated the edges (si, tj) with the appropriate flows, proceed
as follows. Whenever there is vertex si such that all the edges leaving si have already
been associated with their flows and the edge entering si has not been yet, associate the
edge entering si with the flow equal to the sum of flows on the edges leaving si. Repeat
analogously for ti with the only difference that the edge leaving ti is associated with
the sum of flows on the edges entering ti. The obtained assignment of flows guarantees
that the flow entering s as well as the flow leaving t is zero and that the flow entering
each intermediate node equals the flow leaving that node. In the rest of the proof, we
show that the constructed flow “respects” all the capacities and has size |X |.

Claim. The flow entering any si equals |Si ∩ X | and the flow leaving any tj equals
|Tj ∩ X |.

Proof. We prove the claim regarding s1, . . . , sm; the proof regarding t1, . . . , tk is sym-
metric. Assume that s1, . . . , sm are ordered in such a way that i < j whenever Si ⊆ Sj .
The proof is by induction on this sequence. Let e1, . . . , el be the edges leaving s1. Due
to minimality of S1 the heads of the edges correspond to sets T ′

1 . . . T ′
l of F2. Denote

X ∩ V (S1, T
′
i ) by X ′

i . Observe that X ′
1, . . . , X

′
l is a partition of X ∩ S1. Indeed, any

two X ′
y and X ′

z are disjoint because any u ∈ X ′
y ∩ X ′

z implies that one of T ′
y and T ′

z

is contained in the other one contradicting the minimality assumption for the larger set.
For any u ∈ X ∩ S1, the set S1 is the minimal one that contains u just because it is
a minimal set in F1. Let T ′ be the minimal set in F2 that contains u. Clearly, there is
an edge between the vertices corresponding to S1 and T ′, hence there exists a j such
that T ′ = T ′

j and u belongs to X ′
j . We have proved that X ′

1 . . .X ′
l are disjoint and

cover all the vertices of X ∩S1. Hence, they form a partition of X ∩S1. Consequently,
|S1 ∩ X | = |X ′

1| + . . . + |X ′
l |. Recall that |X ′

j | is exactly the flow assigned to ej and
the flow on the edge entering S1 is the sum of flows on all ej . The validity of the claim
for S1 follows immediately.

Consider now si for i > 1. Let e1, . . . , el be the edges leaving si. The head of every
ej is either some sy or some tz . In the former case, let X ′

j = Sy ∩ X , in the latter case
let X ′

j = V (Si, Tz)∩X . Similar to the case with S1, we can show that X ′
1, . . . X

′
l form

a partition of X ∩ Si. Observe that the flow assigned to every ej is exactly |X ′
j |: if the

head of ej is some sy , it follows from the induction hypothesis taking into account that
y < i; if the head of ej is some tz , the observation follows from the initial assignment
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of flows. Taking into account that |Si ∩ X | = |X ′
1| + . . . + |X ′

l | and that the flow on
the edge entering Si is the sum of flows on the edges leaving Si, |Si ∩X | is exactly the
flow on the edge entering si. �
Considering that X is a valid set, it respects the minimal and the maximal cardinalities
of all the sets in F1 and F2. It follows that the flow assigned to the edge entering each si

is valid and leaving each tj is valid. For the edges of type (si, tj), the validity follows
by definition of the flow on these edges.

It remains to show that the amount of flow delivered from s to t is exactly |X |. To
this point observe that the amount of flow leaving s is the sum of flows entering the
nodes corresponding to the maximal sets of F1. Let S′

1, . . . , S
′
l be these maximal sets.

Clearly, |S′
i ∩ X | is exactly the flow entering each vertex s′i. Taking into account that

each element of X belongs to some S′
i, we obtain X = |S′

1 ∩ X | + . . . |S′
l ∩ X |. �

Lemma 2. Let F be a valid flow from s to t. Then there is a valid set X such that |X |
equals the amount of flow that leaves S.

Proof. For every edge e between vertices si and tj , fix X(e) ⊆ V (Si, Tj) such that
|X(e)| is the amount of flow on edge (si, tj). There is such an X(e) since the maximal
capacity on the edge is |V (Si, Tj)|. Let X be the union of all X(e).

Using the inductive argument analogous to the one used in proof of Lemma 1, we can
show that the flow entering every si and leaving every tj equals |Si ∩X | and |Tj ∩X |,
respectively. Taking into account that the flow is valid, the number of elements of every
Si and Tj contained in X satisfies their minimal and maximal cardinalities. �
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Abstract. We formulate a problem of goal satisfaction in mutex networks in 
this paper. The proposed problem is motivated by problems that arise in concur-
rent planning. For more efficient solving of goal satisfaction problem we design 
a novel global filtration technique. The filtration technique is based on exploit-
ing graphical structures of the problem - clique decomposition of the problem is 
used. We evaluated the proposed filtration technique on a set of random goal 
satisfaction problems as well as a part of GraphPlan based planning algorithm. 
In both cases we obtained significant improvements in comparison with exist-
ing techniques. 

Keywords: global filtration, mutual exclusion network, search. 

1   Introduction 

We propose a new global filtration method for satisfying goals in mutual exclusion 
networks in this paper. The mutual exclusion network is an undirected graph where a 
finite set of symbols is assigned to each vertex. The interpretation of edges is that a 
pair of vertices connected by an edge cannot be selected together. In other words, 
edges in the graph represent mutual exclusions of vertices (or conflicts between verti-
ces). Having a goal, which is a finite set of symbols, the task is to select a stable set of 
vertices in this graph such that the union of their symbols covers the given goal. 

This problem may seem artificial at first sight but in fact it is a slight reformulation 
of problems that appear in concurrent planning for artificial intelligence [1] with 
planning graphs [2] and in Boolean formula satisfaction [3]. In addition to these ap-
plications the defined problem may be generic enough to worth studying for itself (the 
more detailed motivation is given in section 2). 

Existing techniques that can be used to solve the problem include variety of back-
tracking based search methods enhanced with consistency techniques which is a typi-
cal approach used in constraint programming practice [4] and which we are following 
too. Our experiments expectably showed that local consistency techniques (namely 
arc-consistency) can bring significant improvements in terms of overall solving time 
compared to plain backtracking. Nevertheless, this result invoked a question what an 
improvement can be obtained by using a certain type of global consistency? We are 
trying to answer this question in this paper. 
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As a first step we investigated the possible usage of existing global constraints [4, 
12] for modeling the problem. We considered several existing global constraints 
based on network flows (such as allDifferent and similar constraints; our idea was to 
simulate the problem as a network flow and then model it using these constraints). 
But it turned out that existing global constraints are not suitable for modeling the 
problem (the reason we identified as a main obstacle is the quite complicated relation 
between the impact of selection of a vertex on the rest of the mutual exclusion net-
work and the goal we are trying to satisfy). The option was to develop our own spe-
cialized global filtering method for the problem which we eventually did. 

Our filtering method exploits the structural information encoded in the problem. 
Valuable structural information in the mutual exclusion network is a complete sub-
graph (clique). More precisely we can extract this structural information if we have a 
clique decomposition of the network. 

If we know that several vertices in the graph form a clique we also know that at 
most one of them can be selected into the solution. This simple property allows us to 
do further relaxed reasoning. The clique of vertices can be treated as single entity with 
a limited contribution to the solution (since only one vertex can be selected which 
typically means that not a lot symbols in the goal can be covered by the clique). Then 
we can check relaxed condition on selection of a vertex into the solution. A vertex can 
be selected into the solution if the maximum number of symbols that can be obtained 
from the remaining cliques plus the number of symbols of the vertex is not lower than 
the number of symbols in the goal. This condition is necessary but not sufficient, 
however if it does not hold we can filter out the vertex from further consideration. 

This paper is organized as follows. First we give more details about our motivation 
to deal with the problem. In the next two sections we introduce some formalism 
through which we will express the problems and we discuss some complexity issues. 
The fourth section is devoted to the description of our new global filtration. In the 
main part, we evaluate our approach using a set of benchmarks. Finally, we put our 
work into relation with existing works on the similar topic and we sketch out some 
ideas for future development. 

2   Motivation by AI Problems 

We would like to give a motivation for studying goal satisfaction problems in mutual 
exclusion networks in this section. Generally, we have two sources of motivation 
from artificial intelligence - the first is concurrent planning and the second is Boolean 
formula satisfaction. 

The main motivation for our work was concurrent planning known from artificial 
intelligence [6,7,9]. To provide better insight into our motivation let us introduce 
concurrent planning briefly. Although the formalism and theory around concurrent 
planning is quite complex the basic idea is simple. Let us have a certain planning 
world (as an example we can consider a planning world shown in the upper part of 
figure 1). The task we want to fulfill is to transform the given planning world by  
executing actions from a set of allowed actions into a state that satisfies certain goal 
condition (as an example of the goal condition for a planning world we can take the 
planning world shown in the lower part of figure 1). An action in this context is an  
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Fig. 1. An example of planning problem. The task is to transform the initial state of a given 
planning world into a planning world satisfying the goal condition (in the goal condition we do 
not care where the truck is located). A concurrent solution plan is in the right part of the figure. 

elementary operation that locally changes the planning world (such an elementary 
operation in figure 1 is for example take box 1 by crane A). 

In the basic variant of planning problems we are searching for a sequence of ac-
tions that, when executed one by one starting in the given planning world, results into 
the planning world that satisfies the goal. The concurrent planning itself represents a 
generalization of this basic variant. Particularly, we allow more than one action to be 
executed in a single step in concurrent planning. This generalization is motivated by 
the fact that certain actions do not interfere with each other and they can be executed 
simultaneously without influencing each other (such non-interfering actions in figure 
1 in the upper part are for example take box 1 by crane A and take box 5 by crane B; 
the pair of actions load box 1 by crane A on truck and move truck from left location to 
right location do interfere). Thus, the task in concurrent planning is to find not just a 
sequence of actions but a sequence of sets of non-interfering actions that when exe-
cuted starting in the given planning world results into a goal satisfying state. The 
execution of a sequence of sets of actions means that we are executing sets of actions 
one by one where actions from each set are executed simultaneously. This is allowed 
by the fact that actions in each set of the sequence do not interfere. 

But what is the relation between the concurrent planning and the mutual exclusion 
network mentioned in the introduction? The frequently asked question which arise 
during solving process of algorithms for concurrent planning is “What are the sets (or 
is there any) of non-interfering actions that satisfies certain goal?”. To be more con-
crete, this question often arises during the solving process with the usage of the 
framework of so called planning graphs [2]. This is the case of the pioneering 
GraphPlan algorithm as well as of its modern derived variants [8,9,10]. This question 
can be directly modeled as a mutual exclusion network (actually we borrowed the 
term mutual exclusion from the planning graph terminology), where the vertices of 
the network are represented by actions (a set of terms that forms the effect of the 
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Initial state 

Goal condition 

Concurrent plan for reaching the goal 
 
{take(craneA, box1, pileX); take(craneB, box5, pileZ)} 
{load(truck, craneA, box1); put(craneB, box5, pileY)} 
{move(truck, siteA, siteB); take(craneB, box4, pileZ); 
take(craneA, box2, pileX)} 
{load(truck, craneB, box4); put(craneA, box2, pileX)} 
{take(craneB, box5, pileY); take(craneA, box2, pileX)} 
{put(craneB, box5, pileZ)} 
{put(craneA, box2, pileX); unload(truck, craneB, box1)} 
{move(truck, siteB, siteA); put(craneB, box1, pileY); 
take(craneA, box2, pileX)} 
{load(truck, craneA, box2); take(craneB, box1, pileY)} 
{move(truck, siteA, siteB); put(craneB, box1, pileY); 
take(craneA, box3, pileX)} 
{put(craneA, box3, pileX); unload(truck, craneB, box2)} 
{move(truck, siteB, siteA); put(craneB, box2, pileY); 
take(craneA, box3, pileX)} 
{load(truck, craneA, box3); take(craneB, box5, pileZ)} 
{put(craneB, box5, pileY); unload(truck, craneA, box4)} 
{move(truck, siteA, siteB); take(craneB, box5, pileY)} 
{load(truck, craneB, box5); put(craneA, box4, pileX)} 
{take(craneA, box4, pileX); unload(truck, craneB, box3)} 
{move(truck, siteB, siteA); put(craneA, box4, pileX); 
put(craneB, box3, pileZ)} 
{take(craneB, box2, pileY); unload(truck, craneA, box5)} 
{put(craneA, box5, pileX); put(craneB, box2, pileZ)} 



 A Global Filtration for Satisfying Goals in Mutual Exclusion Networks 145 

action is assigned to the corresponding vertex as a set of symbols) and edges of the 
network are represented by pairs of actions that interfere with each other. 

The minor motivation to study the concept of mutual exclusion networks is Boo-
lean formula satisfiability. We found that Boolean formula satisfaction problems 
(SAT) [3, 19] can be modeled as mutual exclusion networks. This issue is studied in 
more details in [17, 18], therefore we mention it as a motivation only.  However, let 
us note that a SAT problem consists in finding of a valuation of Boolean variables 
that satisfies a given formula in conjunctive normal form (CNF - conjunction of 
clauses where clause is a disjunction of literals). 

Intuitively, it is possible to observe that such modeling can be done by declaring 
literals to be vertices of the network where each vertex (literal) has assigned a set of 
clauses in which it appear as its set of symbols. The goal would be the set of all the 
clauses of the given formula and edges in the network would connect vertices (liter-
als) which are conflicting (in the most trivial case, literals x  and x¬ , where x  is a 
variable, are conflicting). 

These two areas of application of our concept of global filtering are especially suit-
able since they often contain properties of objects that behave like functions. That is, 
a single value can be assigned to the property of an object or of a group of objects at 
the moment (for example imagine a robot at coordinates [3,2] , the robot can move to 
coordinates in its neighborhood, so the possible actions are: ([2,2])moveTo , 

([2,3])moveTo , … ; the robot can choose only one of these actions at the moment; 
executing more than one action at once is physically implausible). Such functional 
property typically induces a complete sub-graph in the mutual exclusion network. 

3   Mutual Exclusion Network and Related Problem 

We define mutual exclusion network and problems associated with it formally in this 
section. 

The following definitions formalize mutual exclusion network (shortly mutex net-
work) and the associated problem of satisfying goals in the mutex network. We as-
sume a finite universe of symbols S  for the following definitions. 

 

Definition 1 (Mutual exclusion network). Mutual exclusion network is an undi-
rected graph ( , )N V M= , where a finite set of symbols Ø ( )S v S≠ ⊆  is assigned to 
each vertex v V∈ .                                                                                                          □ 
 

Definition 2 (Goal satisfaction in mutex network). Given a goal G S⊆  and a 
mutex network ( , )N V M=  the problem of satisfying goal G  in the mutex network 
N  is the task of finding a stable set of vertices U V⊆  such that ( )u UG S u∈⊆∪ .      □ 

 

An example of mutual exclusion network and a problem of goal satisfaction in this 
network are shown in figure 2. 

The problem of goal satisfaction in mutex network is computationally difficult. To 
show this claim we can use a polynomial time reduction of the Boolean formula satis-
faction problem to the problem of goal satisfaction in mutex network. Then it remains 
only little to conclude that the problem of goal satisfaction in mutex network is NP-
complete. 
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Theorem 1 (Complexity of goal satisfaction). The problem of goal satisfaction in 
mutex network is NP-complete.                                                                                     ■ 

 

Sketch of proof. If we are given a set of vertices we are able to decide whether it is a 
solution of the problem or not in polynomial time. Hence, the problem is in NP class. 
NP-hardness can be proved by using polynomial time reduction of Boolean formula 
satisfaction problem (SAT) to the problem of goal satisfaction in mutex network. Con-
sider a Boolean formula B  over a set of Boolean variables. It is possible to assume 
that the formula B  is in the form of conjunction of disjunctions, that is 

1 1
imn i

i j jB x= == ∧ ∨ , where i
jx  is a variable or a negation of a variable (literal). For each 

clause 1
im i

j jx=∨  where 1,2, ,i n= …  we introduce a symbol i  into the constructed goal 
G . We introduce vertices v  and v¬  into the network for every variable v  from the 
set of variables. A set of symbols 1( ) { | { }}im i

jjS x i x x== ∈∪  is assigned to each vertex 
x  of the network (set of symbols for a vertex corresponds to the set of clauses in 
which the literal corresponding to the vertex occurs). Finally we add an edge { , }i k

j lx x  
into the mutex network if i

jx v=  and k
lx v= ¬  or i

jx v= ¬  and k
lx v=  for some Boo-

lean variable v  ( i
jx  and k

lx  are positive and negative literals of the same variable). 
Now it is sufficient to observe that we can obtain a solution of the original Boolean 
formula satisfaction problem from the solution of the constructed problem of goal 
satisfaction in polynomial time.                                                                                     ■ 

 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2. An instance of the problem of satisfying goal in a mutual exclusion network. The solu-
tion is depicted by circles around vertices. 

There is little hope to solve the problem of goal satisfaction in mutex network effec-
tively (in polynomial time) in the light of this result. It seems that search is the only 
option to solve the problem. However, the search may be more or less informed. The 
more informed search leads to the lower number to steps required for obtaining a 
solution (the number of steps of the search is usually in tight relation with the overall 
solving time). One of the most successful techniques how the search can be made 
more informed is the usage of so called filtration techniques (or consistency tech-
niques) which are used intensively in constraint programming [4]. 

The filtration technique is a specialized algorithm that enforces certain necessary 
condition for existence of the solution in the problem. Since the basic requirement on 
the filtration technique is its high speed and low space requirements the necessary 
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Solution U={2,5,6,7} (S(2)∪S(5)∪S(6)∪S(7)={c}∪{a,b,j}∪{e,f}∪{d,g,h,i}={a,b,c,d,e,f,g,h,i,j}⊇G) 
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conditions that are used in practice represent relatively big relaxations of the original 
problem. Enforcing of the consistency is done in most cases by ruling out the values 
from the variables over which the search makes decisions. Such removal of values 
reduces the size of the search space. The amount of search space reduction is deter-
mined by the strength of the filtration technique (that is by the strength of the en-
forced necessary condition). On the other hand the stronger filtration technique is 
often redeemed by its higher time complexity. Therefore a balanced trade-off between 
strength of filtration technique and resource requirements must be found. 

A well known example of filtration technique is arc-consistency [11]. This is the 
representative of the technique that enforces certain type of local necessary condition. 
Locality of filtering technique means that a small number of decision variables is 
considered at once (in the case of arc-consistency only two variables are considered at 
once). Another advantage of local filtering techniques is that they are usually highly 
generic which allows using them in variety of problems with no or little adaptation. 

The stronger filtration can be achieved by so called global filtering techniques. 
These methods take into account more than two decision variables at once (in the 
extreme case all the decision variables in the problem). The large portion of the prob-
lem considered at once inherently implies stronger necessary conditions that can be 
enforced. However, the drawback of global filtering techniques is that they are asso-
ciated with particular sub-problems (for example the problem where we have several 
variables with finite domains of values and we require pair-wise different values to be 
assigned to these variables respecting variable’s domains - allDifferent filtering tech-
nique [12]) which precludes their usage when we cannot recognize the right sub-
problem in the problem of our choice. 

4   Global Filtration for Goal Satisfaction in Mutex Network 

We have the formal definition of the problem we are about to solve it at this point. 
The solving approach we develop in this section is a new global filtration technique.  
The technique will be designed specially for problems of goal satisfaction in mutex 
network (with regard on applications in concurrent planning). 

We visually observed that mutex networks obtained from problems arising in con-
current planning embody high density of edges grouped in relatively small number of 
clusters (this observation was done using our visualization utility on the series of 
concurrent planning problems). Let us note that our method works with sparse mutex 
networks as well. The high density of edges and their structural distribution is caused 
by various factors. Nevertheless, we regard the functional character of properties of 
objects encoded in the network as the most important one (in planning generally, the 
functional character of object’s properties is typical). Values that form the domain of 
such property induces complete sub-graphs (clique) in the mutex network. The de-
scribed structural characterization of mutex networks we can meet in concurrent plan-
ning can be exploited for designing of a filtration technique. 

If we know a clique decomposition of the mutex network we can reason about the 
impact of the vertex selection on possibility of goal satisfaction. To be more concrete, 
we know that at most one vertex from each clique of the decomposition can be se-
lected to contribute to the satisfaction of the goal. Hence, for each clique of the  
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decomposition we can calculate the maximum number of symbols of the goal which 
can be covered by the vertices of the clique. When we select a vertex into the solution 
the necessary condition on the solution existence is that the number of symbols cov-
ered by the remaining cliques of the decomposition together with symbols associated 
with selected vertex must not be lower than the number of symbols in the goal. 

The second part of the idea of our filtration technique is that if we restrict ourselves 
on the proper subset of the goal the set of vertices ruled out by the above counting 
arguments can be different. Therefore it is possible to perform filtration by the tech-
nique with respect to multiple sub-goals of the goal to achieve the maximum pruning 
power. We call these sub-goals of the goal projection goals and according to this 
designation we call the whole filtration technique projection consistency. 

4.1   Partitioning the Mutex Network into Cliques 

Projection consistency assumes that a partition into cliques of a mutex network is 
known. Thus we need to perform a preprocessing step in which a partition into cliques 
of the mutex network is constructed. Let ( , )N V M=  be a mutex network. The task is 
to find a partition of the set of vertices 1 2 nV C C C= ∪ ∪ ∪…  such that i jC C∩ = Ø 
for every , {1,2, , } &i j n i j∈ ≠…  and iC  is a clique with respect to M  for 

{1,2, , }i n= … . Cliques of the partitioning do not cover all the edges in the network in 
general case. For 2 2 2

1 2( )nm M C C C= − ∪ ∪ ∪… , m ≠ Ø holds in general (where 
2 {{ , }| , & }C a b a b C a b= ∈ ≠ ). Our requirement is to minimize n  and m  somehow. 

Unfortunately this problem is too hard for reasonable objective functions of n  and 
m  to be solved within the preprocessing step (for instance it is NP-complete for 

minimizing just n  [5]). 
As an exponential amount of time spent in preprocessing step is unacceptable it is 

necessary to abandon the requirement on optimality of partition into cliques. It is 
sufficient to find some partition into cliques to be able to introduce projection consis-
tency. Our experiments showed that a simple greedy algorithm provides satisfactory 
results. Its complexity is polynomial in size of the input graph which is acceptable for 
the preprocessing step. The greedy algorithm we are using repeatedly finds the largest 
greedy clique; the clique is extracted from the network in each step; the algorithm 
continues until the network is non-empty. For detailed description of this process see 
[14]. We also made some experiments with partition into cliques of higher qualities 
than that produced by the greedy algorithm. However, we did not observe any subse-
quent improvement of the filtering strength of projection consistency. 

4.2   Formal Definition of Projection Consistency 

For the following formal description of projection consistency we assume that a parti-
tion into cliques 1 2 nV C C C= ∪ ∪ ∪…  of the mutex network ( , )N V M=  was con-
structed. Projection consistency is defined over the above clique decomposition for a 
projection goal Ø P G≠ ⊆ . The projection goal P  enters the definitions as a parame-
ter. Projection goals are used for restricting the consistency on a certain part of the 
goal satisfaction problem (on certain part of the goal) which may eventually 
strengthen the necessary condition we are about to check. 
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The fact that at most one vertex from a clique can be selected into the solution al-
lows us to introduce the following definition. 

 

Definition 3 (Clique contribution). A contribution of a clique 1 2{ , , , }nC C C C∈ …  to 
the projection goal Ø P G≠ ⊆  is defined as max( ( ) | )S v P v C∩ ∈  and it is denoted 
as ( , )c C P .                                                                                                                      □ 

 

The concept of clique contribution is helpful when we are trying to decide whether it 
is possible to satisfy the projection goal by selecting the vertices from the partition 
into cliques. If for instance 1 ( , )n

i ic C P P= <∑  holds then the projection goal P  can-
not be satisfied. Nevertheless, the projection consistency can handle a more general 
case as it is described in the following definitions. 
 

Definition 4 (Projection consistency: supported vertex). A vertex iv C∈  for 
{1,2, , }i n∈ …  is supported with respect to a given clique decomposition and the pro-

jection goal P  if 1, ( , ) ( )n
j j i jc C P P S v= ≠ ≥ −∑  holds.                                                   □ 

 

Definition 5 (Projection consistency: consistent problem). An instance of the prob-
lem of satisfaction of a goal G  in a mutex network ( , )N V M=  is consistent with 
respect to the given clique decomposition and the projection goal Ø P G≠ ⊆  if every 
vertex iv C∈  for 1,2, ,i n= …  is supported with respect to the given clique decompo-
sition and the given projection goal.                                                                              □ 

 

It is easy to observe that projection consistency is a necessary but not sufficient condi-
tion on existence of the solution. This claim is formally proved in [15]. 

 
Algorithm 1: Projection consistency propagation algorithm 

function propagateProjectionConsistency 1 2({ , , , }, )nC C C P… : set 
1:  0γ ←  
2:  for 1,2, ,i n= …  do 
3:   ic ← calculateCliqueContribution ( , )iC P  
4:   icγ γ← +  
5:  for 1,2, ,i n= …  do 
6:   for each iv C∈  do 
7:    if ( ) ( ) iS v P P S v cγ + ∩ < − +  then { }i iC C v← −  
8:  return 1 2{ , , , }nC C C…  

 

function calculateCliqueContribution ( , )C P : integer 
9:  0c ←  
10: for each v C∈  do 
11:  max( , ( ) )c c S v P← ∩  
12: return c  

 
A propagation algorithm for projection consistency is shown here as algorithm 1. 

Clique decomposition and projection goal are parameters of the algorithm. The algo-
rithm runs in ( )O V P  steps which is polynomial in size of the input [15]. 

To ensure maximum vertex filtration effect we can enforce the consistency with re-
spect to multiple projection goals. However, it is not possible to use all the projection 
goals since they are too many. Our experiments showed that projection goals iP   
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Clique decomposition V = C1  C2  C3  C4 , where C1={1,2,3,4}, C2={6,8}, C3={5}, and C4={7}. 
Projection goals: P1={c,e,f}, P2={a,b,d,g} and P3={h}. 

 

Fig. 3. Example of projection consistency enforcing. The goal satisfaction problem is same as 
in figure 2. Unsupported vertices are surrounded by squares. For example vertex 3 is unsup-
ported for the projection goal P1={c,e,f} since vertex 3 contributes by 0, C2 contributes by 2, C3 
contributes by 0, and  C4 contributes by 0 which is together less than the size of P1. 

where { | & { | ( ) } }iP s s G v s S v G i= ∈ ∈ ∩ =  provide satisfactory filtration effect 
(precisely, it is the best selection rule we found by experimentation). The number of 
projection goals of this form is linear is size of the goal G . 

An example of projection consistency enforcing in the goal satisfaction problem 
from figure 2 is shown in figure 3. 

5   Experimental Evaluation 

This section is devoted to experimental evaluation of the projection consistency. Our 
experimental evaluation is concentrated on two aspects of the proposed global consis-
tency. Firstly, we would like to evaluate the consistency itself by using a set of ran-
domly generated goal satisfaction problems. Secondly, we would like to evaluate the 
benefit of the new consistency when it is applied in concurrent planning. We carried 
out this evaluation by integrating the consistency into the GraphPlan based algorithm 
for generating concurrent solutions of planning problems. 

5.1   Random Goal Satisfaction Problems 

When we visually observed how do the problems arising in concurrent planning look 
like the distribution of structures was clearly evident. The mutex network associated 
with the problems typically consists of small number of relatively large cliques ac-
companied with small number of edges not belonging to any clique. The example of 
such mutex network is shown in figure 4. 

The most variable part of the problem as it was evidenced by our observation is the 
number of edges not belonging to any clique. Therefore we decided to have this pa-
rameter as the main variable parameter in our set of randomly generated problems. 

As a competitive technique we chose arc-consistency since it is similar to our new 
technique in several aspects. First, arc-consistency is easy to implement. This is also  
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true for projection consistency. Second, both filtration 
techniques remove values from the decision variables 
(not tuples of values etc.). 

We integrated both techniques into a backtracking 
based algorithm for solving the goal satisfaction  
problem in mutex network. The algorithm performs 
filtration after each decision - so we are maintaining 
arc-consistency [11] or projection consistency respec-
tively in our solving approach. 

We evaluated our global filtration technique in 
comparison with arc-consistency on a set of random 
problems of goal satisfaction of the following setup  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Random mutex networks with 120 vertices and with fixed structured part (several com-
plete sub-graphs) and with increasing portion of randomly added edges. The parameter m is the 
probability of presence of an edge between a pair of vertices. Mutex networks shown in this 
figure were used for experimental evaluation. 

motivated by the visual observation of problems arising in concurrent planning. In a 
mutex network consisting of 120 vertices we constructed several complete sub-graphs 
using uniform distribution with the mean value of 20.0. The size of the goal was 60 
and each vertex has assigned a random set of symbols from the goal of the size gener-
ated by the normal distribution with the mean value of 8.0 and the standard deviation 
of 6.0. Finally we added random edges into the mutex network. More precisely, we 
add each possible edge into the mutex network with the probability of m  where m  
was a variable parameter which ranged from 0.0 to 0.1. The illustration of randomly 
generated mutex networks used in our evaluation is shown in figure 5. 

m=0.00 m=0.02 m=0.04 

m=0.06 m=0.08 m=0.10 

Fig. 4. Mutex network arising 
as a sub-problem during con-
current solution construction of
a planning problem 
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For each value of the parameter m  we generated 10 goal satisfaction problems and 
we solved them using backtracking with maintaining arc-consistency and maintaining 
projection consistency respectively. Along the solving process we collected data such 
as number of backtracks, runtime etc. The variable and value ordering heuristics are 
the following. A variable with the smallest domain (smallest clique) is selected pref-
erably. Values (vertices) within the variable’s domain are not ordered. 

The tested algorithms were implemented in C++ and were run on a machine with 
AMD Opteron 242 processor (1.6 GHz) and 1 GB of memory under Mandriva Linux 
10.2. The code was compiled by gcc compiler version 3.4.3. 

For each value of parameter m  we calculated average runtime of both techniques, 
runtime of the easiest problem (the problem with the fewest number of backtracks) 
and the runtime of the hardest problem (the problem with the highest number of back-
tracks). The results we obtained are shown in figures 6, 7, and 8. 
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Fig. 6. Runtime for random goal satisfaction problems (average of 10 problems for each value 
of random edge probability m) 

 

Fig. 7. Runtime for random goal satisfaction problems (easiest problem of 10 for each value of 
random edge probability m) 
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The results show that backtracking with maintaining projection consistency is gen-
erally faster than backtracking with maintaining arc-consistency on a set of tested 
problems. In some cases, version with maintaining projection consistency is several 
times faster (figure 6). The version with maintaining projection consistency achieves 
better improvement compared to the version with maintaining arc-consistency on 
harder problems (figure 8). On the other hand, on easy problems projection consis-
tency provides little or no advantage (figure 7). We may also observe that harder 
problems tends to occur more for lower values of m . On these problems projection 
consistency represents clearly the better option. 

The improvement ratio of solving algorithm using projection consistency with re-
spect to the version with maintaining arc-consistency is shown in figure 9. On the 
tested problems we reached the improvement up to the order of magnitude. 
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Fig. 8. Runtime for random goal satisfaction problems (hardest problem of 10 for each value 
of random edge probability m) 
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Fig. 9. Improvement ratio of backtracking with maintaining projection consistency with respect 
to backtracking with maintaining arc-consistency on random goal satisfaction problems 
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Fig. 10. Ratio of solvable random goal satisfaction problems. For each value of parameter m the 
number of solvable problems divided by the total number of problems (=10) is shown. 
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Fig. 11. Number of backtracks of tested algorithms on random goal satisfaction problems 

The solvability ratio of the tested problems is shown in figure 10. For different 
values of the parameter m  we had a different numbers of problems that had a solution 
and problems for which the solution does not exist. 

We also performed comparison of number of backtracks that occurred during solv-
ing the random problems by the tested algorithms. In addition to backtracking with 
maintaining arc-consistency and projection consistency we also made the calculation 
of backtracks made by simple uninformed backtracking. The comparison of number 
of backtracks is shown in figure 11. According to figure 6 and figure 11 we can ob-
serve that the runtime and the number of backtracks correspond well. 

5.2   Problems Arising in Concurrent Planning 

We also evaluated the proposed projection consistency in solving problems that arise 
in concurrent planning (that is in the area for which the filtering technique was  
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designed). We used GraphPlan planning algorithm [2] for this evaluation. This algo-
rithm often solves a sub-problem that can be reformulated to a goal satisfaction prob-
lem in mutex network. 

In our evaluation we used maintaining arc-consistency and projection consistency re-
spectively to improve solving process of this sub-problem within the planning algorithm. 
We used a set of planning problems of three domains - dock worker robots domain, tow-
ers of Hanoi domain, and refueling planes domain. The tested problems were of various 
difficulties. The length of solution plans ranged from 4 to 44 actions. The comparison of 
runtime of standard GraphPlan and versions enhanced with maintaining arc-consistency 
and projection consistency is shown in figure 12. All the planning problems used in this 
evaluation are available at the web site: http://ktiml.mff.cuni.cz/~surynek/research/ 
rac2007/ (we use our own format of planning problems since we use non-standard repre-
sentation with explicit state variables). 

The improvement obtained by using projection consistency is up to 1000%  with 
respect to both the standard GraphPlan as well as with respect to the version enhanced 
by arc-consistency. Additionally, we found that goal satisfaction problems arising in 
these planning problems are very similar to random goal satisfaction problems with 
the parameter ranging from 0.07 to 0.02 where the improvement obtained by projec-
tion consistency is promising. 

0.01

0.1

1

10

100

1000

10000

ha
n0

1
dw

r0
3

dw
r0

4
ha

n0
2

pl
n0

4
dw

r0
2

dw
r0

1
ha

n0
4

ha
n0

3
pl

n0
1

pl
n1

0
pl

n1
6

pl
n2

2
ha

n1
5

ha
n1

7
pl

n1
4

ha
n0

7
dw

r2
7

pl
n1

7
pl

n2
1

pl
n1

9
ha

n1
1

dw
r2

2
pl

n0
5

dw
r2

6
dw

r0
5

pl
n0

6
pl

n2
0

dw
r2

3
pl

n1
1

ha
n1

6
dw

r2
1

pl
n2

3
ha

n1
8

pl
n1

3
dw

r0
7

ha
n0

8
dw

r2
4

dw
r2

5
ha

n0
9

dw
r1

6
ha

n1
3

dw
r2

0
dw

r1
7

ha
n1

2
ha

n1
0

ha
n1

4
pl

n1
5

Standard
Arc-cons is tency
Projection

R
untim

e in seconds

 

Fig. 12. Runtime comparison of GraphPlan based planning algorithm with versions of this 
algorithm enhanced by maintaining arc-consistency and projection consistency for solving goal 
satisfaction problems on a set of planning problems of various difficulties 

6   Note on Additional Related Works and Conclusion 

Originally, we proposed projection consistency in [15]. This paper is dedicated to 
theoretical properties of the technique (theoretical comparison with arc-consistency is 
given in the paper). A study of using similar technique to projection consistency in 
solving difficult Boolean formula satisfaction problems is given in [17]. The applica-
tion of arc-consistency in planning using planning graphs is proposed in [16]. We also 
investigated the possible strengthening of the projection consistency by replacing the 
expression 1, ( , ) ( )n

j j i jc C P P S v= ≠ ≥ −∑  in the definition 4 by 1, ( , ( ))n
j j i jc C P S v= ≠ −∑  
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( )P S v≥ − . Details are given in [13]; but let us note that this change complicates 
effect of vertex removal too much in a general network (the so called monotonicity 
[15] does not hold). 

The ideas of using constraint programming techniques in concurrent planning are 
presented in [6, 7]. However, only local propagation techniques are studied there 
(contrary to our approach which is global). Concurrent planning itself is studied in 
[20]. In this work we were primarily inspired by global constraints such as that pre-
sented in [12]. 

We proposed a novel global filtration technique for a problem of goal satisfaction 
in mutual exclusion networks. The problem for which the filtration was designed was 
inspired by concurrent planning. However, the technique is more general, currently 
we know that it is also effectively applicable in solving SAT problems. 

We evaluated our technique in comparison with arc-consistency on a set of ran-
domly generated problems. For this evaluation we used our own implementation in 
C++. The improvement gained by using projection consistency is up to the 10 times 
shorter runtime; a similar improvement was achieved in number of backtracks. Fi-
nally, we integrated our technique into the GraphPlan planning algorithm to evaluate 
it in some area of application. Again we obtained significant improvements compared 
to the standard version. 

For future work we plan to investigate more precise computation of supported ver-
tices (definition 4) using network flows. We believe that a more precise computation 
of this would lead to a stronger necessary condition we are checking. 
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